Templater user manual
v8.0

Januar y 24, 2024
New Generation Software Ltd
Rikard Paveli¢

(111

[[T11 TEMPLATER

Content

Y oY 1 U T TS O P PR PSRRI 4
New Generation SOFEWAre LEd.cioiiiiiieeie ettt ettt e s bee e s e e e sanes 4
=T 02]] = 1< PSS 4

W] o] o To] g =T I oTolU [y g YT o | 3SR 5
(03 {ToTcl @10 =T o T {1, RPN 5
)Y I (o ' -1 S T TSP UUTO PSR PPTRPI 5
TeXE DASEA FOIMIALS...ciuiiiiii ettt e s e st e et e e s e e bt e e sar e e sbeeesareenn 6

Y] o] o Jo g d=Te [YoYU E T PRSP 7
IMHCIOSOTE INET ..ttt ettt h e s bt st sa et e bt e s bt e s bt e sae e st e e beesbeesbeesaeesatesabeenbeenns 7
(0] T LI 1Y T OO PP PP TUPTUPROPRRPPOt 7
[CTo Yo =41l a o [o] 1« ISP 8
(0] 1 1= - O OO PO TP TSP U P PTRTPPOTOPPPRRPPPOIOt 8

LGy o T= g - = o PRSP 9
LIRS 9
IVHINIMI@T AP Lttt ettt et b e s bt e s bt e s aee s ab e eab e et e e beesbeesaeesateeateenbeenbeenbeesanenas 10
Y=L ad] aF= U] o - I o] o] [=]o! PPNt 12
0 =T [T (] 82Ut 13
BUilt-in processors and @analysiscuuuiiiicuiieeiicieee ettt se e e s e e s s e e s e e e e e e e breeeeenes 13

Application Programming INteIfaceueiiiuiiiiieciie et e e s saae e e e saaaeeeas 15
LOW-IEVEI AP ...ttt et st sttt e b e bt e s b e e s beesae e et e et e e nreesneennne e 15
o [T=d T LA Y = ST PRPROt 22
(00T o] 1= {U T | A o o VUSSR 27

Templater EAitor for MicroSoft OffiCe.......coiuiiiii it e aree e e 48
INStallation @Nd HCENSING ...cci i e e e e e s bae e e s sbteeessbeeeessbeeeeesnnes 48
Yol o =1 - [PPSR U SRR TP PR PSRN 50
TAE ANAIYSIS. ..t et e et e e e et e e e e e e bee e e e abtee e e e btaeaeabtaeaeabtaeeeaartaeeeanrreeaeanes 53
I =38 a1 V7T - o o N 54
B IE5 T <38 153 4oV -SSR 55
(U TaT oY T a = = o Y o] = (<] PSPPIt 56
DL o T =d A g Y- =T o oY o] - = OSSPSRt 60

WOTA FEATUIES ...ttt et s e sttt e b e bt e s be e s he e st e et e e b e e sbeesaeesanesaneeneenes 62

[[T11 TEMPLATER

Y Y I 0 =T o =SSR PPPRNt 62
I b4 o] 1ol =T =41 o [ST PRPROt 63
Vo o B o1 Tol 1 Toll =T (U T USSR 80
KNOWIN ISSUBS ...eiiiiiiiii ittt ettt sttt st e et e e s sba e e e s sba e e e s sba e e e senaeeessanes 91
EXCEI FEATUIES ...ttt ettt et e et e st e st e e s bt e s bt e e sateesabeeesabeesabeesaseeesabeeaan 93
Complex NON-Streaming dOCUMENTSiiiiciiiie it e e e e e s s e e e e sabe e e e snbeeeesnreeas 93
RESIZADIE DENAVION ...t ettt e e st e e st e sbe e e saree e 94
o] B o Tl ol 1 (ol {=T- L (U [<1 P 113
KNOWIN ISSUBS ...ttt s e e s bba e s s a e e e s ba e e e ssba e e e sabaeee e 132
POWEIPOINT FEATUIES. ... eiiieiee ettt ettt e sab e s bt e s bt e e sbe e e s abeesabeesabbeesabeeenees 133
Ready-t0-USE PreSENTAtioNSciiiciiieiiciiie ettt e s e e et e e e s saer e e e e sataeeesnraeeeesnnneeeean 133
RESIZADIE DENAVIONciiiiiie ettt st sbe e bt e saee e sbeeesaree s 133
POWEIrPOINt SPECITIC TRATUIES....eii it e et e e et e e e e tae e e sraraeeeeennaeeeean 143
KNOWIN ISSUES ...ttt sttt st e s st e e s s b et e e ssra e e e sanraeeesnnaeeesas 147
CSV /EEXE FATUIES weeeeeieeeeeeeeee ettt et e e e e ettt eeee e s e e e aateeeeessssaasaaeeeeeessssassasaeeeesssesaassssaeeeesssesnnrrens 149
Y1007 0] (=l e Fo Yol U 15/ T=Y o £ PSR PR 149
A=Y [0 a1 aT=4e [oTolU] 0 T=T) £ SRR 150
XIMIL FRATUIES ..ttt ettt ettt ettt et ettt e e sttt e abe e sabe e s bt e e sabeesabbeeanbeesabeeesabaesabeeenbeesabaeesareesn 152
Y1007 (=Ko Lo ol U T3 o T=Y oY £ R 152
SErEaMING AOCUMENTSviiiiiii i e e et e e e e e e e st e e e e e s e e aabaeeeeeeesesnsateneeeaseesansenns 153
B ST PraACTICES ..uuueieuiiiiii e —————————————————————————_——————————————————————————————————. 154
(@00T 0] o] 1= Qe [o Yol U] 0 1=T) £ SRPR 154
Performance/memory OptiMiZatioNS.......cccccveeiieiieriieeie et et et ereebeeteesbeesaeesvesabeebeenbeenns 161
T A8 MANAEEMIENT . ..ttt neannnnnes 167
ULy o L=t AT g T=To I o1 [0]=4 o P 169
N O TSP PP PR PPPPPPTN 170

[[T11 TEMPLATER

About

New Generation Software Ltd.

N.G.S. is a software company founded in 2005 by Rikard Pavelié in Croatia. It focuses on making
software development easier and more productive. Since its early days Templater-like solutions were
used for reporting/document generation. Once we realized such an approach would be useful to
others, N.G.S. released Templater v1.0 in 2011.

N.G.S. primary focus is on providing consulting around its software products.

Templater
Templater focuses on binding data with documents. This allows for separation of data and layout
leading to customization of templates by business users/end clients.

Unlike other reporting libraries which focus on document layout through low level API, Templater in
comparison only has high level API. This way document layout is not defined in code, but rather
provided outside, often by designers, domain experts experienced with Excel or even end users of
the software.

While Templater is not a generic reporting solution it can be used to create really complex
documents, but often this will require knowledge of Word, Excel and PowerPoint to setup such
documents. Enterprise companies can utilize Templater Editor for Microsoft Office to ease template
management via smart analysis and quick iterations.

Templater is used by wide variety of companies and non-profits around the world, from large banks
to small startups.

https://templater.info/

[[T11 TEMPLATER

Supported documents

Office Open XML

Templater main focus is to support Microsoft Office formats based on XML. Word, Excel and
PowerPoint support new XML based format which is standardized by ISO since 2007.

To support such formats Templater must understand many of the features supported by Word, Excel
and PowerPoint. Templater is written in such a way that new Word, Excel and PowerPoint versions
work out of the box for most old and new features. Only in specific scenario a new version is required
to support some specific feature of the new Microsoft Office tools.

Supported extensions:

e docx - standard Word XML format

e docm - macro-enabled Word format

e xlsx - standard Excel XML format

e xIsm - macro-enabled Excel format

e pptx - standard Presentation XML format

e pptm - macro-enabled Presentation format

Some features require combination of documents/formats, e.g. chart in a Word/PowerPoint requires
the use of xlsx embedded within the docx/pptx. Templater supports such features seamlessly.
Support for Word embedded documents also works out of the box, such as other docx, XML or text
files.

Templater has excellent performance and can create 100+ Word pages per second, generate huge
Excel files (50MB+) while keeping memory under control.

Use of XML based formats requires a valid license; otherwise a watermark message will be left in the
document.

XML format
To support OOXML, Templater needs to work closely with XML. Therefore, Templater has rather
good XML support and can deal with large XML files in a performant manner.

Since v7, XML format is natively supported by Templater in streaming fashion which is convenient
when it can cover a use case, such as integration, or some externally defined protocol.

If Templater is used without a valid license, it will inject comment at the top of the XML.

https://en.wikipedia.org/wiki/Office_Open_XML

[[T11 TEMPLATER

Text based formats
Unlike XML based formats which require a valid license, text-based formats can be used for free
without buying a license.

Common use case for text-based formats are CSV (with streaming support), simple message
generation (such as configurable SMS message) or white labeling specific HTML based outputs.

When passing in extensions to Templater, specific ones will be recognized:

e csv- Comma Separated Values format
e txt - text based format
e utf8 - text based format using UTF-8 encoding

All extensions use same processing method, with the only difference being that utf8 extension uses
explicit UTF-8 encoding, while the others use system/input default encoding.

[[T11 TEMPLATER

Supported languages

Source code is written in two different languages for different platforms. C# is used for Microsoft
.NET, while Scala/Java is used for JVM. There is feature parity between the languages, as much as
languages allow for it. Whenever a new version is released features are built for each language
separately.

Since dynamic structures are natively supported, Templater is usable from command line or as JSON
endpoint, which makes it easily usable from other languages.

Demo page provides a nice example of Templater support for JSON. While there is no in-built support
for JSON, when JSON is transformed into appropriate lists and maps/dictionaries it can be processed
by Templater.

Microsoft .NET

Templater is released for several Microsoft .NET versions:

e _NETv4.0
e .NET standard v2.0

This means Templater works on all relevant versions of .NET:

e legacy Microsoft .NET Framework - Windows only
e .NET (core) - new, cross platform version of Microsoft .NET

While Templater works on Mono, it is not officially supported on that platform.

Nuget can be used to add Templater dependency.

Oracle Java

Templater supports Java 8 and newer versions. There is no special use of internal APIs, so Templater
works out-of-the box on new Java versions such as Java 11, 17 or newer. Templater for Java is a no
dependency jar without any external dependency.

Maven can be used to add Templater dependency.
For JVM there is a separate Scala build for version 2.13.

When Scala builds are used, Scala specific data types can be used, such as Option and collections.

https://templater.info/demo
https://www.nuget.org/packages/Templater
https://search.maven.org/artifact/hr.ngs.templater/templater/

[[T11 TEMPLATER

Google Android

Templater also works on Android, although it requires specific configuration setup. Both Java and
Scala versions can be used. Since Android does not support awt package, during initialization, low
level plugins need to be disabled, which will avoid loading the awt classes.

Minimum Android SDK version supported is 26, which is Android 8.

Others

JSON

Common use case is to pass in JSON to Templater. For this to work JSON must be transformed in
appropriate data structures. In Java those are arrays, lists and maps and for .NET their counterparts:
arrays, lists and dictionaries.

Maps/Dictionaries must have string as keys, meaning only:

e |Dictionary<string, object>
e Map<String, Object>

e [Dictionary/HashTable

e Map

with strings as keys are supported.

In .NET default JSON.NET conversion is not supported, but rather an alternative conversion method
must be used.

Github example shows how Templater can be used from a command line by passing JSON with a
template document to Templater for processing. It also has a .NET implementation for JSON ->
Dictionary conversion which works as expected in Templater.

HTTP server
While there is no build of Templater for Javascript, it’s rather easy to consume it through HTTP API.
Templater demo page is a small application which provides various other functionalities and can be

used as a starting point for building internal applications which use Templater though REST API.

Templater server application also shows how a third party application can be used to complement
document generation by doing PDF conversion via Aspose, Spire or LibreOffice.

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/TemplaterJson
https://github.com/ngs-doo/TemplaterExamples/blob/master/Intermediate/TemplaterJson/src/DictionaryConverter.cs
https://github.com/ngs-doo/TemplaterExamples/blob/master/Intermediate/TemplaterJson/src/DictionaryConverter.cs
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/TemplaterServer
https://products.aspose.com/words
https://www.e-iceblue.com/
https://www.libreoffice.org/

[[T11 TEMPLATER

Getting started

Only a couple lines of code are required to use Templater API. While the main Templater APl is very
small, Templater can be configured with custom code which makes it highly customizable and allows
support for all kinds of use cases.

Templater can be tested through the browser in an online demo which is just a simple application

that shows few basic use cases.

All features of Templater are available for testing without buying a license in which case Templater
will inject a watermark message into the document. Templater comes with a license designed for
easy integration into third party applications. It is not allowed to remove the watermark message
from the generated documents which will be removed once a valid license is used during the
initialization.

Many examples are available at Github and customers will often be referred to the example relevant

to their question.

Tags
Templater works by analyzing document and locating tags within the document. Tags can come in 3
different formats:

e [[TAG]]
o {{TAG}}
o <<TAG>>

Tag format can be customized/disabled during library initialization. This is explained in more detail
later in the documentation.

Metadata

Tags can have metadata. Metadata is an additional info put alongside tag which is used by Templater
to invoke some specific actions and often combined with custom code registered during library
initialization. Metadata is defined by semicolon and a pattern. There can be multiple metadata on a
tag. Special characters must be escaped with a backslash (\). Metadata are processed in order of the
definition.

Examples of metadata:

o [[tagl]:format]
o {{tag2}:.format(YYMMDD):padLeft(10)]
e <<tag3>:empty(value was missing)]

https://templater.info/demo
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/TemplaterServer
https://templater.info/eula
https://github.com/ngs-doo/TemplaterExamples

[[T11 TEMPLATER

Navigation expressions

Special metadata can also be used in tags. Tags consist from navigation parts and each part can have
additional metadata attached to it. This metadata can greatly change the way processing is handled.
To enable this feature navigation metadata separator must be specified. Examples of navigation
metadata with semicolon separator:

e [[instance.collection:top(10).account.number]]
o {{person:method(a,b)}}
o <<ijtems:sort(name):at(1).description>>

Metadata on expressions can be combined, the same way metadata on tags can be combined.

Via Navigation expressions all Metadata features can be reproduced. This is not done by default to
simplify learning curve.

Minimal API

There are only a handful of methods in Templater:

e Configuring library
o Factory - for default configuration without any plugins. License file: templater.lic will
be resolved from relevant places (resource in the project and the root folder)
o Builder - for configuring library with various custom behavior
e Opening and closing/flushing the document
o Open(file) - processing file in place
o Open(input stream, extension, output stream, cancel token) - reading template from
input stream and writing it to output stream. Depending on the extension and the
usage additional in-memory stream can/will be used, alongside with continuous
streaming to output while processing
e High level:
o Process(data) - accepts various data types and process it according to either build
rules or via custom code defined for specific types
o Low level:
o Resize(tags, count) - resizes (duplicates) part of the document which contains all
specified tags. When count = 0 part of the document will be removed
= There is also special Resize where instead of strings, pairs of string and
integers are accepted. This is highly specialized API for fine control of tags®
Replace(tag, value) - replaces first matching tag in the document
Replace(tag, index, value) - replaces tag at specified position
GetMetadata(tag, all) - returns user defined metadata for the tag (either first or for
all of them)

1 This APl is used to explicitly state which tags will be used. Unlike the string version which has various smart
behavior built in, such as expanding the context and working on shared contexts, this version has much simpler
behavior

10

[[T11 TEMPLATER

o GetMetadata(tag, index) - provides both user defined and internal metadata for the
tag at specified index. Internal metadata is used by the library to detect appropriate
parts of the document and relationship between tags

o Tags - lists all current tags detected in the document. Once a specific tag is processed
it will be removed from this list

Most usage of Templater consists solely from using high level API. Low level API is mostly used by
Templater internals or 3™ party plugins. In practice, Templater APl should be used via application
specific abstraction which does the setup of the library and just pass in the template and data for
processing.

Builder/Configuration APl is explained in more detail later in the documentation.

A short description of each method is available via native documentation. Javadoc can also be
browsed online.

Pros and cons of minimal API

While high level API is deceptively simple, depending on the types of the data passed in, and on the
plugins (either built-in or custom registered during initialization) Templater can perform various non-
trivial operations on the document:

e image - picture will be inserted into the document

e SVG document —a SVG picture will be inserted into the document

e two-dimensional array/data table - dynamic resize feature of Templater will be invoked

e XML - raw XML can be inserted into the document or special actions can be performed

e URL - alink will be added into the document

e File—an embedded document will be added into Word

e ResultSet/IDataReader/Iterator/IEnumerator — document can be processed in a streaming
way (without loading all data upfront/

While API is rather simple, to fully master the use of Templater various examples should be explored
to learn all minor details which can be used to tweak behavior during processing.

Major benefit of minimal API is that once data is designed/defined it is no longer required to change
interaction with the library. This simplifies change requests and increases code reuse. When dynamic
data types are used, such as maps/dictionaries, often no code changes are required. Examples of this
would be:

e ResultSet/Data table processing is independent of the SQL which populates them

e Dictionaries/Maps can be processed without any code changes

e data types used for presentation can be reused for reporting

e plugins can be used to transform between data types which allows for even more reuse

While benefits heavily outweigh the downsides, there are some and often developers need to
unlearn some habits carried from other reporting libraries:

11

https://templater.info/apidocs/

[[T11 TEMPLATER

e its non-obvious that Image data type must be used to inject image into the document

e since there is no API for setting color of a font, such customizations require Templater
specific way of doing things

e processing collections without for loops and start/stop definitions often require mind-shift
for developers used to explicit imperative style of document generation

Setting up a project
While there are numerous project examples at Github, such as the most simple one it is rather trivial

to setup the project.

.NET project example

1. Ina C# project add a reference to Templater via Nuget: Install-Package Templater 8.0.0
Prepare a Word file with tag [[tag]] and add it to the project
Initialize the library to create reusable factory:
var factory = Configuration.Factory;

4. Open the document for processing with using pattern:
using(var doc = factory.Open("template.docx"))

5. Process the document using high level API:
doc.Process(new { tag = "value" });

6. Atthe end of using there is an implicit call to finish the processing:
doc.Dispose();

During the call to Dispose Templater will flush the result of processing to the output stream, or in this
case to the opened template.docx file.

Java project example

1. InJava Maven project add a dependency to Templater:
<dependency>
<groupId>hr.ngs.templater</groupld>
<artifactId>templater</artifactId>
<version>8.0.0</version>
</dependency>
2. Prepare a Word file with tag [[tag]] and add it to project resources
Initialize the library to create reusable factory:
DocumentFactory factory = Configuration.factory();
4. Open the document for processing using try-with-resource pattern:
try (TemplateDocument doc = factory.open("template.docx")) {
5. Process the document using high level API:
doc.process(new HashMap<>(){{put("tag", "value");}});
6. Atthe end of using there is an implicit call with try-with-resource pattern, which can be also
called manually, to finish the processing:
doc.close();

12

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/ImageExample
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/CollapseRegion
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/CollapseRegion
https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/SimpleDocument

[[T11 TEMPLATER

Providing license information
Before Templater can be used without a watermark message, valid license info must be specified
during initialization. There are multiple ways to specify the license info:

e license can be embedded into the project as templater.lic file?
o during initialization Templater will scan the project resources for the file with exact
name. Resource file must be kept in the root folder, otherwise it will not be found
e license information can be specified during initialization via Builder.Build(customer, license)?
o thisis the recommended way of initializing the license, as it does not depend on
project setup which sometimes change the resource behavior
o license file can be specified during initialization via Builder.Build(path)
o path can specify location on the disk or in the project resource

Thread safety

Once factory was initialized it can be reused to open/process/flush templates. Factory can be reused
concurrently across threads as it is thread safe. ITemplateDocument instance created from the
factory is not thread safe and should not be concurrently used from different threads. Best practice is
to initialize the factory once in a static field:

private static readonly IDocumentFactory Factory =
NGS.Templater.Configuration.Builder.Build("Email"”, "License");

Templater supports cancellation pattern and its common practice to run processing on a separate
thread while monitoring execution duration and memory usage. This can be used to guard against
memory starvation since XML can be quite memory heavy.

Built-in processors and analysis
Various data types will work out of the box, such as:

e collections (arrays, lists, iterators, ...)
e maps and dictionaries

e result set/data reader

e data table/data set

e objects via reflection

When data is passed to high level API best match is found for the provided input. Once match is
found data is processed by the appropriate processor. During processing Templater will navigate
over objects/data and process parts of the object via other appropriate processors.

2 NET example: https://github.com/ngs-
doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Beginner/WebExample%20(.N
ET)/TemplaterWeb.csproj#L98

3 Java example: https://github.com/ngs-
doo/TemplaterExamples/blob/master/Advanced/PowerQuery/src/main/java/hr/ngs/templater/example/Powe
rQueryExample.java#l21

13

https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Beginner/WebExample%20(.NET)/TemplaterWeb.csproj#L98
https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Beginner/WebExample%20(.NET)/TemplaterWeb.csproj#L98
https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Beginner/WebExample%20(.NET)/TemplaterWeb.csproj#L98
https://github.com/ngs-doo/TemplaterExamples/blob/master/Advanced/PowerQuery/src/main/java/hr/ngs/templater/example/PowerQueryExample.java#L21
https://github.com/ngs-doo/TemplaterExamples/blob/master/Advanced/PowerQuery/src/main/java/hr/ngs/templater/example/PowerQueryExample.java#L21
https://github.com/ngs-doo/TemplaterExamples/blob/master/Advanced/PowerQuery/src/main/java/hr/ngs/templater/example/PowerQueryExample.java#L21

[[T11 TEMPLATER

Data is matched against the tags which were analyzed at the start of processing. Once document is
analyzed, result of the analysis is available via various methods (GetMetadata) and properties (Tags).

Processors will try to use only the relevant tags, which mean that it's fine to call high level Process
method multiple times which will only affect relevant parts of the document.

Processors can create new tags via Resize APl or remove them via Replace API. Tags created via
Resize APl will be available for new processing. New tags can't be created” via the Replace API even if

" u

value is used which looks like a tag, e.g.: Replace(“tag”, “[[newTag]]“)

Processing of streams can be chained and thus new tags created from the previous processing which
is no longer available for processing can be processed in subsequent processing.

Built-in object processor will only use public fields and methods. While classes do not need to be
public, in Java it is highly recommended that classes are public since otherwise performance
overhead will be incurred or processing can fail due to lack of security permissions®.

Java beans standard is supported for method names (which makes templates more readable).

4 There is a way to create new tags by combining replace with a resize, but that is not a common APl usage
5> There is a configuration option to control this visibility behavior

14

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/CollapseRegion

[[T11 TEMPLATER

Application Programming Interface

While there are not many methods in Templater API, they can be used in variety of ways and by
combining them in specific patterns complex operations can be performed.

The APl is small on purpose, to encourage generic data binding instead of programming document
layout through code. Templater follows the language naming standards, thus interfaces in .NET are
prefixed with an |, unlike in Java®.

Low-level API

ITemplater (.NET)/Templater (Java) is often referred as low-level API since it works at the lowest level
which is just an abstraction over the document format. There are only few methods, but with few
overloads:

public interface ITemplater

{

IEnumerable<string> Tags { get; }

string[] GetMetadata(string tag, bool all);

string[] GetMetadata(string tag, int index);

bool Replace(string tag, object value);

int Replace(string tag, int index, object value);

bool Resize(IEnumerable<string> tags, int count);

bool Resize(IEnumerable<TagPosition> tags, int count);
IEnumerable<ITemplater> Clone(int count);

While low level APl is rarely used there are use cases when it's useful to use it:

e writing custom data type processors

e writing custom handlers (especially for removing region of the documents)

e implementing custom streaming on objects

e analyzing document and rewriting it into a different processing format

e checking if all tags are processed at the end - it is often that templates are provided with
typos or designed in some wrong way; in which case it's useful to explain the problem

Some plugins are invoked (low-level) when calling Replace method on the low-level API, while some
of them are not (metadata, navigation). Special datatypes are recognized, meaning that call to
ITemplater.Replace(tag, image) will still inject image into the document.

Tags

Once ITemplater is created, all tags are listed (only once) in this property. Once all occurrences of a
tag have been processed this tag will no longer be listed. Since new tags can't be created with
Replace method once processing has started, new values cannot appear in this property.

6 Prior to v7 interfaces in Java were also prefixed by |

15

[[T11 TEMPLATER

Tag sharing

It is expected that same tag is repeated multiple times. When same tag is defined on multiple places,
depending on where the tags are detected they can enter into a special sharing mode. There are
different aspects to tag sharing:

e tags repeated in the same row
o tags share the same initial context
o low level Replace will only replace a single tag; to replace the other tag Replace must
be called again
e tags repeated in a different row, but part of the same context
o tags have different initial context, but Resize was called in a setup which grouped
them together
o low level Replace will only replace a single tag; to replace the other tag Replace must
be called again
e tags repeated in different tables, but part of the same context
o when same tag is used in different table, depending on the Resize arguments tables

can enter into a special sharing arrangement
o low level Replace will only replace a single tag; to replace the other tag Replace must
be called again
e tagsrepeated in different sheets/slides, but used in a collection
o when same tag is used in different sheets or slides, but duplicated via Resize they will
enter into a special sharing arrangement
o low level Replace will only replace a single tag; to replace the other tag Replace must
be called again
e tags bound to a custom XML (Word feature only)

o when tagis bound to an XML, multiple instances of same tag point to the same
underlying value

o low level Replace will replace all occurrences of the relevant tag (tag can be repeated
inside a collection, in which case only occurrences of the specific row will be
replaced)

e tagsrepeated in embedded document (Word feature only)

o tagsin embedded documents will respect context rules of such documents

(docx/csv/html/xml)

An important aspect of tag sharing is that tags will be shared as long as they have the same
navigation path. If navigation expressions are used, tags which would traverse the same path will not
be considered the same if their expressions are not the same. For example, expressions repeated in
different tables:

| {{employees.name}}

| {{employees.name}:collapse}

16

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/SharedCollection
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/XmlBinding

[[T11 TEMPLATER

will be considered the same, since they have the same navigation expression - employees, so when
resized they will enter special sharing mode. To change this behavior so that tags are considered
different, navigation expressions can be attached to the tags, e.g.:

| {{employees:id(1).name}}

| {{employees:id(2).name}:collapse}

Which will cause Templater to treat them differently due to different navigation expressions:
employees:id(1) vs employees:id(2). Main use case for navigation expression is not so much to give
distinction to paths, but rather to call into user defined plugins for navigation customization.

GetMetadata
Metadata is additional information defined alongside tag. There can be multiple metadata defined
for a tag. They are processed in order of definition.

There are various use cases for metadata in tags:

e simple formatting
o decimal places in numbers
o date formatting
e type conversion
o convert from string to an image (by looking up image from a specified location)
o currency exchange rate conversion
e complex conversion
o verbalizing numbers into text

Tag can be repeated in the document and they can have different metadata.

A common use case would be to repeat a DateTime field and show it as a separate date and time
columns, e.g.:

Date Time User
[[event.on]:format(DMY)] [[event.on]:format(HHMM)] [[event.user]]

Using GetMetadata method on event.on tag will return:

o GetMetadata(“event.on”, false) - return the user defined metadata for the first tag. In this
case this is: “format(DMY)”

e GetMetadata(“event.on”, true) - returns all user defined metadata for this tag. In this case
this would be both “format(DMY)” and “format(HHMM)”

e GetMetadata(“event.on”, index) - returns both user defined and internal metadata for this
tag at specific index. If invalid index was specified (negative or larger than the number of
tags) null will be returned.

17

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/CollapseRegion

[[T11 TEMPLATER

GetMetadata with an index is required to support advanced replacement scenarios where due to
document layout tags are not replaced in order. A common use case would be to have a tagin
multiple tables, but when resized only the first tag per table should be replaced.

Escaping special characters

Depending on which tag format is used, if such a character is used within the metadata is must be
escaped with a backslash (\). Also, if semicolon has to be used, it also needs to be escaped with a
backslash.

For example, to format a time escape code is required in certain cases: [[event.on]:format(HH\:MM)]

Internal metadata
When resize is used on set of tags, they become bound together via certain rules. Templater tracks
this binding via internal metadata so it can process them appropriately.

Internal metadata have a “_ci:” prefix, which should be avoided for user defined metadata.

Replace
While Tags and GetMetadata are read-only operations, Replace method mutates the document. The
document is mutated in memory’ until it’s flushed (or Resize is called in streaming mode).

Calling a replace will replace only a single tag (except when the tag is bound to XML in Word).

Replace will ignore the metadata specified on the tag and will just replace the specified tag with the
provided value. Metadata is only processed when called from a high-level API.

Even if tag format is specified as a value, new tag will not be created without a new analysis of that
document region. Analysis is only done at the start (whole document) and after a resize (region only
affected by the resize).

While metadata handlers are not called on low level Replace methods, low level API handler are.

Specialized data types also behave as “expected”, e.g.: an image passed directly to low level API will
still be injected?® into the document.

Special data types

Some formats use a specialized representation of a value, e.g.: Excel uses different representation for
numbers, booleans, text and dates. Both Word and Excel support images which is also not just “a
value”.

Templater has special logic to handle few specific data types in OOXML formats:

e Image - will insert picture into the document at the location of the tag
o there is a special Templater image type: Imagelnfo®

7 For Word and Excel Templater (.NET) uses a specialized stream to avoid LOH issues:
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap

8 Inserting an image works only on OOXML formats. It will not be converted to ASCII art if inserted into a text
format

18

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/large-object-heap

[[T11 TEMPLATER

= by default awt images are supported: Bufferedimage and ImagelnputStream
with low-level plugins which should be disabled on Android

= _NET image types are supported: Image and Icon, but if used in modern .NET
environment (such as .NET 7 or newer) only work on Windows and are
disabled by default
o Iftagis located on Alternative text of an existing image, it will be replaced, but
maintain existing setup (size, style, effects, ...)
= This is the only way to insert image in PowerPoint format
e SVG document — will insert SVG picture into the document at the location of the tag
o Microsoft Office 2016 and later support vector images via SVG standard
o .NET supported type: XDocument
o Java supported type: w3c.doc.Document
o Fallback image can be provided by registering SvgConverter during library
initialization
o XML - will insert raw XML into the document

o thisis useful to directly provide values to the underlying format in a way it’s not
exposed through Templater
o there are three internal metadata handlers for doing specific operations with the
XML
= replace-xml
= merge-xml
= remove-old-xml
= |tis also possible to specify the way how XML should be handled via XML
attribute (templater-xml). This is often more convenient than expecting user
to specify the way xml should be processed via tags
= user defined plugins can be registered for further fine-grained control over
XML operations
it’s easy to corrupt the document if “invalid” XML is provided
.NET supported type: XElement
Java supported type: w3c.dom.Element

O O O O

with multiple XML tag replacements in same paragraph, order might not be
respected (it will use reverse order of processing, instead of tag location)
o In Excel Templater supports various custom attributes which are used to specifying
cell/row information. This can be used to specify background of a cell or height of a
row:
= templater-cell-style=CELL — will copy style from the specified CELL onto the
cell where tag is located
= templater-row-style=ROW — will copy style from the specified ROW onto the
row where tag is located
= templater-row-height — used to specify height of a row
= templater-row-custom-height — used to specify custom height of a row

%1t is common to transform the image before passing it to Templater (e.g.: resize, change DPI, etc...). A relevant
example is on Github: https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/Pictures

19

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/AndroidExample
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/DocxImport
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/Pictures

[[T11 TEMPLATER

= templater-row-collapsed — used to specify collapsed state of a row
= templater-row-custom-format — used to specify custom format used in a row
= templater-row-hidden — used to specify hidden attribute of a row
= templater-row-thick-bottom — used to specify thickness of row bottom
= templater-row-thick-top — used to specify thickness of row top
e Jagged arrays and lists!® with elements of same dimension - invokes a Dynamic resize feature

of the Templater
o all nested lists must be of the same size
e ResultSet/DataTable - invokes a Dynamic resize feature of the Templater
e URL/URI (in Word and PowerPoint only) - will create a simple hyperlink
o Both Excel and Word have special hyperlink features which can have separate
description and link. This feature is recognized/supported by Templater
e java.util.Date/java.time.*/DateTime (in Excel only) - will convert value into appropriate
number (unless the value is before 1900-01-01)
o This way dates can be formatted via Excel formatting features and used in other
formulas as expected values
o If custom Date objects are used (such as Joda) custom converter must be registered
for to be recognized as native Excel values
e java.io.File/Filelnfo (in Word only) — will create AltChunk element and import embedded
document inside zip file
o embedded document can be either of: txt, rtf, xml, htm, html, docx, docm or doc
o tags from embedded documents will not be immediately available for usage'?, but
stream can be closed and reopened for second processing which will allow for usage
of those embedded tags
e java.util.lterator/IEnumerable/IEnumerator — will process the data in streaming fashion (in
case of IEnumerable only when the actual instance is not backed by ICollection) using the
streaming size specified during the configuration (16k is the default). This allows for
processing of large collections without loading the entire collections in memory

While there is no special type for HTML, it is possible to convert HTML into equivalent OOXML format
(most of the time) via third party libraries. Word also supports HTML natively so HTML can be

injected via File type as embedded document.

Low level converters
Types not supported by Templater (custom containers/monads or date types) can be converted into
types which are recognized by Templater via plugins.

They are called by low level API before being passed to final replacement. They can be registered
during library initialization.

10 NET also recognizes two dimensional arrays: https://docs.microsoft.com/en-
us/dotnet/csharp/programming-guide/arrays/multidimensional-arrays
1 |n similar manner as tags are not created by using replace(“tag”, “[[new tag]]”) API

20

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/DynamicResize
https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/WordLinks
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/HtmlToWord
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/multidimensional-arrays
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/arrays/multidimensional-arrays

[[T11 TEMPLATER

In Java there is low level converter registered by default - for converting awt images into Templater
image data type. Similar conversion exists in .NET for converting System.Drawing.Image and Icon into
Templater image data type. When library for legacy .NET is used, this conversion works out of the
box. When library for modern .NET is used, this conversion must be activated during setup.

Resize
Another mutating APl in Templater is resize which duplicates (when count > 1) or removes (when
count = 0) parts of the document which contains all the specified tags.

Resize relies heavily on context detection - which is Templater specific way of detecting what part of
the document should be affected by an operation. Unlike explicit imperative way to manage part of
the document via start/stop commands and for loops, e.g.:

<for item in items> S{item.name} ‘ S{item.price} ‘ S{item.total}

${item.description}

</for>

Templater takes an approach of implied context based on the detected tags. Equivalent table looks in
Templater as:

[[items.name]] ‘ [[items.price]] ‘ [[items.total]]

[[items.description]]

This makes document much easier to design by non-developers and it reduces the amount of
problems due to bad start/stop loop definition, since they are implied by the document structure and
cannot be placed at an inappropriate location.

Special case of Resize(tags, 1) which neither duplicates nor removes the content is still useful since
it’s used to setup the relationship between tags which is used later on resizing only the subset of
tags.

Region of the document which is affected by the resize is influenced by various features of the
document it operates on, such as:

e |ists
e tables
e sections

e repeatable content controls
e named ranges

e merge cells

e outline levels

e embedded documents

Resize returns boolean which is true if the tag was matched and resize could be performed (there are
cases when resize can’t be performed, such as requesting to do a resize on main Word document).

21

[[T11 TEMPLATER

When complex documents are used with multiple collections for data sources, it can happen that the
user sets up template in an incorrect way (either due to typo or misunderstanding of the behavior)
which results in Resize not working on the expected context. While experienced developer with
Templater will understand the problem by looking at the document, to help the average user
Templater Editor has deep knowledge of rules and relationships and can guide the non-technical user
towards the correct setup.

Clone

While Resize operates on the best match region of the document, clone always operates on the full
document, or to be precise, part of the document managed by ITemplater instance, which for the
default instance is the whole document??,

It creates isolated low level ITemplater regions of the documents which can be independently
modified, since they do not share tags once created.

With the various improvement to context detection Clone is used less and less, but still, sometimes
it’s useful to work around some current limitation of the Templater.

High level API

There is only a single high-level method and access to low level API. This way developer is
encouraged to prepare the data for binding instead of trying to use low level APl for manual
document manipulation.

Process can be called multiple times, which is often the case even for a single argument object, since
additional system wide info can be passed into every processing that way.

public interface ITemplateDocument : IDisposable

{
ITemplater Templater { get; }

ITemplateDocument Process<T>(T data);

Similarly to .NET version and the implicit Dispose()®3, Java version uses AutoClosable* try with
resource pattern.

public interface TemplateDocument extends AutoCloseable {
Templater templater();
<T> TemplateDocument process(T data);

12 Clone can be also called on previously cloned part of the document. Such operation will only affect part of
the document, not the entire document

13 NET framework guidelines advise against doing much work in Dispose method, but this way there is ho need
for a Close method

14 Prior to v6, Java Templater had flush APl which was incorrectly named since it did not support multiple calls
and thus should have been called close

22

[[T11 TEMPLATER

Processors

High level API will analyze the provided object and call into appropriate processors. Additional
processor can be registered during library initialization, but there are several built-in ones which
cover wide area of use cases:

e object processor - works via reflection
o will analyze class for public fields and methods without arguments
o will call into other processors once navigation over property is detected
o will respect internal all metadata
= jtinstructs Templater that all tags should be replaced (this sometimes helps
context detection which considers them unrelated)
e enumerable object processor - duplicates region of document with matching tags
o best matching type is extracted from the values inside a collection - meaning
signature can be an interface
o types with known size will be processed as a whole (ICollection in .NET, Collection in
Java and Seq in Scala)
o streaming types will be processed in a streaming mode
= chunk size can be configured in configuration API
= streaming will only work on non-dictionary/map types. Templater must
check if every element is a dictionary before it can process collection as a
dictionary
o will respect internal clone and fixed metadata
= fixed metadata avoids call to resize and clears up any remaining tag after the
processing
= clone metadata calls into low level Clone instead of Resize while doing
duplication
o collection level methods (such as size) can be used (as long as they don’t conflict with
element level methods)
e dictionary processor - works on maps where strings are used as keys
o can combine both dynamic keys and class fields/methods
o will call into other processors once navigation over key is detected
o supports keys with dot - which is not a navigation over keys
e enumerable dictionary processor - duplicates region of the document with matching tags
o union of all keys is used to define context
o will respect internal clone and fixed metadata
= fixed metadata avoids call to resize and clears up any remaining tags after
the processing
= clone metadata calls into low level Clone instead of Resize
o collection level methods often conflict with element level methods, so they are not
as useful
e ResultSet/IDataReader processor - uses schema information for tag binding
o works in streaming mode - resize is called in chunks® and then processed row by row

15 streaming/chunking size can be configured during library initialization

23

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/ResultSetExample%20(Java)

[[T11 TEMPLATER

o respects the fixed metadata
= will avoid call to the resize and clear up tags after the processing
o callsinto other processors when navigated over tag
o supports multiple results sets (.NET only)
= |DataReader does not support handling of unprocessed tags (it will not call
into OnUnprocessed plugin) when in root prefix, but supports multiple result
sets in that case. When value is available via some property and thus a
navigation path, it supports handling of unprocessed tags but it does not
support multiple result sets
e DataTable (.NET only) processor - uses schema info for tag binding
o respects the fixed metadata
= will avoid call to the resize and clear up tags after the processing
o only asingle resize is performed (when fixed metadata is not used)
o callsinto other processors when navigated over tag
e DataSet (.NET only) processor - uses schema info for tag binding
o respects the clone metadata
= will use Clone instead of Resize when doing duplication
o supports relationships between tables
o does not support handling of unprocessed tags (will not call into OnUnprocessed
plugin)
o will process tables based on their dependency order

Built-in processors support cancellation pattern and will quickly stop the processing if a token has
been cancelled.

Processors only have access to low level API. There is no other internal APl available to them. This
makes them on same playing field as any of the custom processors registered during library
initialization.

Object and dictionary processors can be combined: if class has both methods/fields and also
implements dictionary (with all keys as strings) it will be processed for all tags (dictionary keys +
methods/fields). When processed in such a way conflicting tags will be resolved to dictionary keys (in
favor of methods/fields).

If same tag exists on a collection element and as a collection (e.g. Count/size), it will be resolved
depending on the processor type:

e typed collection will always give preference to element methods
e dictionary collection will resolve tags in preference order:

o dictionary keys

o collection methods

o element methods

24

[[T11 TEMPLATER

Metadata formatters

Few built-in processors will iterate over metadata formatting plugins before passing value to low
level replace API. This means that while direct call into low level Replace will not invoke certain
plugins, call into high level Process will. An example would be:

tag = [[date]:format(YYYY)]
where we expect it to be replaced with a 4 digit year.

Call into ITemplater.Replace(“date”, date) will show the actual date, while the call to high level
ITemplateDocument.Process(new { date = date }) will invoke the appropriate format plugin before
passing it to low level API as a year value (of string).

Metadata handlers

Few built-in processors will iterate over generic metadata handler plugins before passing value to
low level replace API. Unlike metadata handlers, they can stop further processing and instead do an
unrelated change, such as removing tags from the document.

Collapse handlers are built into the library, but they can be disabled and/or custom handlers can be
registered during initialization.

In practice explicit call to collapse is rarely needed, as Resize(tags, 0) should be called on empty
collections. For advanced scenarios when tag sharing is used, Resize(TagPosition(tag, position), 0) can
be used instead.

Navigation expressions

To allow for high degree of customizability v5 introduced navigation expressions for fine grained
control over each part of tag navigation. While there are few built-in plugins, they can be disabled
during initialization. In practice it is expected that user defined plugins take care of various
customizations and specialization during path evaluation. Some common use cases for such
expressions:

e [[items:at(2).name]] — access second element of the collection directly

e [[items:sortBy(name):top(5).description]] — display only first 5 elements sorted by name

o [[object:method(argl, arg2).length]] — call arbitrary method on an object and provide custom
arguments, since by default Templater allows navigation only over zero arguments methods

o [[items:top(5).person.responsibilities:sort(importance).description]] — use expressions
multiple time during same path evaluation

Since expressions can become really user unfriendly, for improved experience they can be paired
with aliases. E.g. alias can be defined for example as:

resp = items:top(5).person.responsibilities:sort(importance)

which would simplify the last example into [[resp.description]] which is much shorter and readable

25

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/CollapseRegion

[[T11 TEMPLATER

Java/.NET differences

Due to Java erasure there are minor differences in behavior between Java and .NET implementation.
When a collection is empty, unless the collection is an array Templater is unable to know the
signature of the collection and has a hard time matching tag.

When this scenario happens during navigation, Templater will assume that all remaining tags are
under current navigation prefix, but if this happens on top level tags, there are two basic approaches
to the problem:

e automatic handling by using array instead of list

e adding collapse or some other metadata and handling it via OnUnprocessed API or at the end
of processing

e manual handling by calling into the low level resize

In case of manual workaround code would look like:

if (collection.isEmpty()) {

document.templater().resize(new String[]{"first", "last"}, 0);
} else {

document.process(collection);

where relevant tags would be specified manually. It's sufficient to pass in minimal number of tags
which fully describe the affected area.

Processing document
Once ITemplaterFactory has been created it can be reused to create new ITemplateDocument for
binding templates with data.

Open method on factory has several overloads:

e Open(string file) - will do a replace of the input file at the end of processing. This APl is
mostly used in some narrow cases and others, stream-based APIs should be used instead

e Open(InputStream input, String extension, OutputStream output, CancellationToken
cancelToken) — should be used most of the time. Templater will not close provided streams;
it will only flush to output at the end of processing. If CSV streaming is performed, Templater
will also flush to output stream while doing Resize operations

Templater processing is CPU intensive and should not be done concurrently as ITemplateDocument is
not parallelism friendly®. It intended to be used in a sequential manner. The only non-CPU intensive
operation is when ResultSet/DataReader as being streamed/chunked, but even that is mostly CPU
intensive (as data preparation will mostly be done in the background before processing starts).

161t is perfectly fine to concurrently process two different Templater requests for different instances of
ITemplaterDocument. It's recommended to limit number of concurrent processing to somewhat below CPU
count and check/guard for memory usage.

26

[[T11 TEMPLATER

Process method returns ITemplateDocument to indicate that operations can be chained one after
another. All operations on ITemplateDocument must be executed sequentially!’. A common pattern
in processing is to first process all fixed/static inputs and then send it the large collection, e.g.:

ITemplateDocument doc = ...;

doc.Process(new { filter = filter })
.Process(new { system = new { user = username, at = DateTime.Now } })
.Process(mainData);

Configuration
While there are various built-in plugins, for Templater to be truly useful in wide set of scenarios there
must be a way to user defined behavior to be plugged in and customize the processing.

Therefore, Templater has several extensibility points for customizing the behavior and widening the
feature set of the library. During library initialization such behaviors can be defined on
DocumentFactoryBuilder accessible from the Configuration.builder() API.

Formatter plugins
Custom formatter can be registered via

DocumentFactoryBuilder include(Formatter formatter);

interface Formatter {
Object format(Object value, String metadata);

}

where built-in plugins will iterate over all registered formatters (first custom, then built-in) and ask
them to handle the value and metadata.

If there is no user defined metadata on the tag, this APl will not be called. If there are multiple
metadata on the tag iteration over them will repeat once for each metadata on the specific tag.
There is alternative low-level API to handle cases when formatting should be performed even when
there is no metadata.

Plugins are expected to match the metadata argument and return the formatted value when
appropriate; otherwise they should just return the original argument. An example of the
implementation looks like:

object Format(object value, string metadata)
{
var ie = value as IEnumerable;
if ((value == null || ie != null) && metadata.StartsWith("empty("))
{
var str = value as string;
if (value == null || str != null && str.Length ==
|| str == null && !ie.Cast<object>().Any())
return metadata.Substring(6, metadata.Length - 5);

17 Since processing is CPU intensive it is not advisable to use async/await patterns or to call it from UI/10 thread

27

https://templater.info/apidocs/hr/ngs/templater/IDocumentFactoryBuilder.html#include-hr.ngs.templater.IDocumentFactoryBuilder.IFormatter-

[[T11 TEMPLATER

return value;

}

This is a built-in plugin for :empty(value is empty) metadata. When provided value is null or empty it
will show instead string within the metadata, which in this case is: value is empty.

The plugin matches the provided metadata and the type to check if it should be invoked.

Once invoked it checks if the value should be replaced and returns a different value. The returned
value goes into next plugin for processing and so until all plugins are iterated over. This way value
formatting can be chained across several plugins (in case of some complex transformation).

A common case in financial document creation is showing numbers as text. While it’s fine to
verbalize specific values in the domain, via a verbalize plugin conversion can be attached to any value
by just marking it for verbalization, eg: [[invoice.total]:verbalize]

Instead of writing code for the actual verbalization, it's common to call into third party libraries for
such conversion®®,

There are several built-in formatter plugins:

e bool(Yes/No) and bool(Yes/No/Unknown) — useful for converting true/false/null into an
appropriate message
o example: for bool(Yes/No) false will be converted into: No
o format for Date (DateTime in .NET and java.util.Date in JVM) — will convert input value into
short date format
o format(PATTERN) for Date — will convert input value into output using PATTERN. This is
language/platform dependent string formatting of date (using SimpleDateFormat in JVM)
o format(yy) will convert input value into 2 year digit format "2012-03-05" -> 12
o format(PATTERN) for other values — will convert input value into output using PATTERN. This
is equivalent to calling String.format on value with provided pattern. It is language/platform
dependent
o format(N2) in .NET will convert number into two decimals string
o format(%.2f) in JIVM will convert number into two decimal string
e empty(MESSAGE) for string and collections — when input is empty or null, MESSAGE will be
displayed in the output
e join(SEPARATOR) for collections — will combine collection elements with SEPARATOR in
between elements
o int[]{1,2, 3} with join(-) will be converted into string 1-2-3

18 C# example can be found at: https://github.com/ngs-
doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Intermediate/CollapseRegion/s
rc/Program.cs#L99

Java example can be found at: https://github.com/ngs-
doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Intermediate/CollapseRegion/s
rc/main/java/hr/ngs/templater/example/CollapseExample.java#L113

28

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/CollapseRegion
https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Intermediate/CollapseRegion/src/Program.cs#L99
https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Intermediate/CollapseRegion/src/Program.cs#L99
https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Intermediate/CollapseRegion/src/Program.cs#L99
https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Intermediate/CollapseRegion/src/main/java/hr/ngs/templater/example/CollapseExample.java#L113
https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Intermediate/CollapseRegion/src/main/java/hr/ngs/templater/example/CollapseExample.java#L113
https://github.com/ngs-doo/TemplaterExamples/blob/0b21f41fb97163c0895100bc7114d169aa5d4c89/Intermediate/CollapseRegion/src/main/java/hr/ngs/templater/example/CollapseExample.java#L113

[[T11 TEMPLATER

o offset(EXPRESSION) for Date — will append specified offset to the actual Date value
o thisis language specific, as .NET will use TimeSpan to offset, while JVM supports only
days
e padLeft(LENGTH) and padRight(LENGTH) — will append space on string representation of the
value so that there are at least LENGTH number of characters with space populating left or
right side of the string. This is useful for fixed length format when values need to be padded
to meet the specification
o 12345 with padLeft(8) will create output of: = 12345°
o padLeft(LENGTH,CHAR) and padRight(LENGTH,CHAR) — is similar to previous plugin, but
instead of space custom character can be defined
o 12345 with padLeft(8,0) will create output of: '00012345"
e substring(START) — is useful for cases when substring(N) needs to be called on the value. If
START is greater than input length, empty string will be returned
e substring(START,LENGTH) — is useful for cases when substring with start and length
arguments needs to be called on the value. Note that this implementation is aligned with
substring behavior on .NET and is same across languages, so even JVM uses
substring(START,LENGTH) pattern instead of Java default substring(START, END)
o "Mr. Rodgers’ with substring(0, 2) will be converted into "Mr’

Metadata handler plugins
Custom handlers can be registered via

DocumentFactoryBuilder include(Handler handler);

interface Handler {
Handled handle(Object value, String metadata, String tag, int position,
Templater templater);

}
where Handled result is an enumeration of action which have happened in the plugin:

public enum Handled {
NOTHING,
OTHER_HANDLERS,
THIS_TAG,
NESTED_TAGS,
WHOLE_OBJECT,
CURRENT_CONTEXT;

}

While metadata formatter can transform input value, there are cases when more complex
transformation must be performed. One such case is collapse (removal) of region in case of certain
condition. There are few such built-in plugins:

e collapse -which will invoke resize 0 for the specified tag when it’s null or empty
o thisis often useful to hide part of the document since the object is not available and
thus document can’t be populated with actual values

29

https://templater.info/apidocs/hr/ngs/templater/IDocumentFactoryBuilder.html#include-hr.ngs.templater.IDocumentFactoryBuilder.IHandler-
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/CollapseRegion

[[T11 TEMPLATER

o when collapse is encountered, Templater will execute templater.resize(tag, 0) on the
tag which had the collapse plugin
o works with tag sharing mode, by calling appropriate resize APl when explicit position
is specified
o collapse-to(other tag) - which will invoke resize 0 on two tags (original and one in argument)
o in non-trivial documents a certain region of the document needs to be removed and
it’s not fully defined with a single tag. In that case specifying two tags for start and
end of removal is often sufficient
o when collapse-to is encountered, Templater will execute templater.resize(new
string[] {tag, other-tag}, 0) where the tag represents the location of the collapse-to.
o only works in non-sharing mode. If tag sharing is used handler will not be executed
e collapse-nested - will invoke resize 0 with all tags under specified path
o most of the times tags which should be removed are nested under the specified path
o when collapse-nested is encountered, Templater will execute templater.resize(all
tags with the same prefix, 0) where tags with the same prefix will depend on the tag
which has the collapse-nested defined
o only works in non-sharing mode. If tag sharing is used handler will not be executed

Collapse pattern is Templater way of performing IF condition in documents. If region is not needed it
can be removed during processing. Common alternative to collapse is a custom showlf(VALUE)
plugin which works similar to collapse, just with inverse logic (keep this section if provided value
matches the argument).

As with metadata formatter plugins, metadata handler plugins are expected to match the provided
metadata and object value before invoking specific actions. With different Handled values, several
options are available for continuing processing:

e Nothing® —indicates that plugin is not applicable and next plugin can be invoked

e OtherHandlers — should be used when plugin is matched, but ordinary processing can
continue (replace operation on this tag and processing of nested/other tags). Primary use
case for this option is to prevent other handlers to run

e ThisTag —when plugin is matched which resolves only current tag. Processing of nested tags
can still continue

e NestedTags® — should be used when plugin has taken care of this and all nested tags (nested
tags are tags which have the same navigation prefix, eg: [[prefix.name]] is a nested tag for
[[prefix]] tag

e WholeObject — when plugin is applicable to whole object, not just nested tags, this return
value can be used to skip processing of other tags in this level

e CurrentContext — should be used when other tags in same context are also handled by the
plugin, so further processing of same tags in this context should be skipped

19 Prior to v5.1 this was the behavior of returning false
20 prior to v5.1 this was the behavior of returning true

30

[[T11 TEMPLATER

Example implementation of the collapse plugins looks like:

Handled Handle(object value, string metadata, string tag,
int position, ITemplater templater)

{
if (metadata.Equals("collapse"))

{

var ie = value as IEnumerable;
if (value == null || ie != null && !ie.Cast<object>().Any()
|| value is bool && (bool)value)

{
var resized = position == -1
? templater.Resize(tag, ©0)
: templater.Resize(new[] { new TagPosition(tag, position) }, 0);
if (resized) return Handled.NestedTags;
}

}
return Handled.Nothing;

}

The plugin checks if it matches the metadata, in which case it checks for null values, empty
collections or true value for boolean property. When either of that is matched it invokes resize 0 on
the low-level APl which returns indication that it has process this and all nested tags when resize was
performed causing stoppage of the current tag (and nested tags) processing.

While collapse plugin is sometimes useful, it’s better to structure types and documents in a way so
that collapse plugin is not required. In Word this is often done by using sections and having tag in the
root of the document between sections. This way removal of the tag will use surrounding sections as
boundaries for the operation, instead of having the same behavior implemented with collapse-to

plugin.

For Word, since v6.1, sometimes a viable alternative to removing sections is to use embedded
documents as a way to add custom sections during processing.

Processor plugin
Custom type processor can be registered via

<T> DocumentFactoryBuilder include(Class<T> manifest, Processor<T> processor);

interface Processor<T> {
boolean tryProcess(String prefix, Templater templater, T value);

}

In rare cases when built-in processors can't handle specific type (either due to non-public visibility,
custom naming rules or some other reason) a custom processor can be registered. All the built-in
processors use the same API, to provide complex behavior.

Several examples of custom processor plugin can be found on Github, such as questionnaire
example.

31

https://templater.info/apidocs/hr/ngs/templater/IDocumentFactoryBuilder.html#include-java.lang.Class-hr.ngs.templater.IDocumentFactoryBuilder.IProcessor-
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/QuestionnairePlugin
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/QuestionnairePlugin

[[T11 TEMPLATER

Low level replacer
While formatter plugin requires a metadata to match and is only invoked from high-level API,
sometimes it’s more useful to always to a type transformation. In that case a plugin for low level API

can be registered via
DocumentFactoryBuilder include(LowLevelReplacer replacer);

interface LowLevelReplacer {
Object replace(Object value, String tag, String[] metadata);

}

Low level replacer is invoked on every value sent to Replace method. Prior to Templater v6 Java
version did not have support for Optional<X>. With v6 this is now built in and not necessary, but an
implementation which could have added support for Java 8 Optional would look like:

public Object replace(Object value, String tag, String[] metadata) {
return value instanceof Optional ? ((Optional)value).orElse(null) : value;

}

Replacers will be iterated in a similar way formatters are iterated over; result of previous
transformation will be passed to next replacer until the final value is sent to the actual processor for
final replacement.

While tag and metadata arguments are often not used, they were introduced to provide all
information to user defined plugins. String array metadata argument represents user defined
metadata for the tag which is currently being processed.

There are many use cases for low level replacers:

e having a default formatting for Dates into string, while format(PATTERN) plugin can still be
used when different formatting of date is required.

e using custom locale for converting numbers. By default, JVM uses DOT (.) always when
converting numbers into strings, while .NET uses locale dependent settings. If DOT needs to
always be used in .NET, appropriate matching can be done with
.ToString(Culturelnfo.InvariantCulture) being called on the value

e converting rich types into images or XML. If special structure is used for image definition, e.g.
map with special keys, appropriate steps can be taken to transform input into relevant
format, such as base64 parsing and image loading

e quoting can be applied on strings when working with CSV

Navigation metadata separator
Navigation plugins are disabled by default, but can be enabled if metadata separator is defined via

DocumentFactoryBuilder navigateSeparator(char character, NavigationEnd
findEnding);

32

file:///D:/Projects/projects/Templater/Web/code/scala/lift/src/main/webapp/apidocs/hr/ngs/templater/IDocumentFactoryBuilder.html%23include-hr.ngs.templater.IDocumentFactoryBuilder.ILowLevelReplacer-
https://github.com/ngs-doo/TemplaterExamples/blob/master/Advanced/CsvStreaming/src/Program.cs
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/CsvStreaming

[[T11 TEMPLATER

interface NavigationEnd {
int endsAt(String input);
}

First parameter (character) is used to define start of navigation expression. Second parameter
(findEnding) is used to find the ending of the remaining tag path. If second parameter is not provided
it will try to match ending as parenthesis followed by navigation character or separator.

Simple implementation of find ending which would return first occurrence of either start of new
navigation expression or next navigation over properties could look like:

input -> {

int nc = input.indexOf("):");

int ns = input.indexOf(").");

if (nc != -1 && (nc < ns || ns == -1)) return nc + 1;
return ns != -1 ? ns + 1 : input.length();

Everything between this separator and specified ending will be recognized as navigation metadata.
Escaping is not supported, but by providing custom navigation ending function, complex expressions
can be supported. Navigation separator must be included in the tag regex, or Templater will not
recognize such tags.

Navigation expression plugins
Custom navigation expressions can be registered via

DocumentFactoryBuilder include(Navigate expression);

interface Navigate {
Object navigate(Object parent, Object value, String member, String metadata);
}

To enable navigation expressions, first navigation metadata must be defined. Once defined,
navigation expressions can fill many roles and greatly expand the customization options. There are
two built-in plugins:

e at(INDEX) — will return element at specified index (zero based) from the input list. If index is
larger than the size of the list, null will be returned
o thisis useful when working with collections and needing to access specific element
(e.g. first) without expanding the collection. Often when working with dynamic
structures, the input data does not match the expected structure and document, so
it’s helpful to being able to work around the data limitations
o [objectl, object2, object3] with at(1) will return object2 instead of collection, which
will avoid the resize operation and Templater will continue working with object2
instance
o top(COUNT) — will return first COUNT elements in the collection
o this is useful for reusing same collection multiple times, e.g.: when presenting top 3
elements at one place and top 10 elements at another

33

https://templater.info/apidocs/hr/ngs/templater/IDocumentFactoryBuilder.html#include-hr.ngs.templater.IDocumentFactoryBuilder.INavigationExpression-

[[T11 TEMPLATER

While it’s preferable that input data matches expected layout, so that there are not many
customization options in tags, but rather tags are used as is, with navigation expression many other
use cases are supported (e.g. using semicolon navigation separator):

e navigating over other methods with arguments
o [[object:method(X).value]] — by registering appropriate plugin custom methods can
be called which require additional argument - X in this case. Parsing of such
arguments must be performed during plugin call, so they can be transformed into
appropriate types
e sorting lists based on specified order, followed by limiting number of elements
o [[items:sort(property):top(5).description]] — if sort is not known in advance, it can be
performed later via plugin. Custom navigations can be chained together to perform
more complex operations and they will be evaluated in order of definition

Embedding such info in the tags, can make them quite unreadable. In that case it’s a good practice to
introduce aliases to shorten the tags. Most formatting plugins could be replicated as navigation
plugins to provide consistent experience, but formatters were introduced much earlier and do not
require activation via navigation option.

On unprocessed tags handler

Prior to v3 mismatch between input and template could cause Templater to consume large amounts
of memory due to calling resize on a tag which was never processed. Since this could not be resolved
in a universal way (removing such tags would hide typing errors) a new AP| was introduced to finally

resolve this issue. Now Templater by default will “process” those tags, by appending :unprocessed
metadata at their end. This way they will not influence resize anymore and typos will be left in the

document (although a new processing will be required to detect them).

If tags with :unprocessed metadata were detected during resize operation, they will be ignored and
skipped over.

This issue was amplified in dynamic structures, where JSON often did not have certain attributes at
all, so Templater could not handle them consistently (they were sometimes resolved as the value was
null).

Unprocessed tags handling can be customized via
DocumentFactoryBuilder onUnprocessed(UnprocessedTagsHandler handler);
interface UnprocessedTagsHandler {

void onUnprocessed(String prefix, Templater templater, String[] tags, Object
value);

}

In scenario when there are unprocessed tags, Templater will invoke this API with:

e current navigation path
e |ow level APl instance

34

https://templater.info/apidocs/hr/ngs/templater/IDocumentFactoryBuilder.html#onUnprocessed-hr.ngs.templater.IDocumentFactoryBuilder.IUnprocessedTagsHandler-

[[T11 TEMPLATER

e all the unprocessed tags
e object value (instance where the tags were mismatched, or the parent instance when the
tags were missing due to null value)

A simple implementation which just removes all such tags would look like:

void OnUnprocessed(string prefix, ITemplater templater, IEnumerable<string> tags,
object value)

{

foreach (var t in tags)
templater.Replace(t, string.Empty);

It’s useful to have validation of templates before they are sent for processing (e.g.: on template
upload) in which case it would be useful to either leave the default implementation, or replace it
with one which will be aware if there are such tags in the document.

There are still some cases in which OnUnprocessed APl is not invoked, such as processing
IDataReader without a prefix. It's good practice to always put some prefix in front of objects which
will trigger expected handlers on most data types, e.g.:

templater.Process(new { prefix = sqlReader });
Instead of just passing in value:

templater.Process(sqlReader);

Resize limit

Prior to OnUnprocessed API one of the main ways to protect against faulty templates was the resize
limit (and built-in guards for Excel row limits). Resize limits specify how many times can a tag be
resized. This translates to the maximum nesting level. The default is 8.

In practice, even the most complex templates have nesting level up to 4. Nesting level of 4 means
that there is a tag nested 4 collections deep. In rare cases when there is more than 8 level of
collection nesting, this limit can be increased to the appropriate value via

DocumentFactoryBuilder resizelLimit(int limit);

XML user defined plugins
While there are several built-in plugins for various kind of XML merging options, for fine-grained
control a new plugin can be registered via

interface XmlCombine {

Element[] combine (Element location, Element[] input, String tag,
String[] metadata);
}

35

[[T11 TEMPLATER

DocumentFactoryBuilder xmlCombine (String metadata, RemovalOption
tagRemoval, XmlCombine combine);

enum RemovalOption {
BEFORE,
AFTER,
MANUAL;

When XML type is detected during processing and XML metadata is matched (via templater-xml
attribute or tag metadata) defined plugin will be invoked. Tag handling also allows for fine tuning via:

o before — tag will be removed before processing

e after —tag will be removed after processing

e manual —tag will be left inside XML and its up to plugin code to decide what to do with the
tag within XML

For location XML representing the top-level document node matching the input node will be
provided, which represents the current state of document in OOXML format, while the input will be
XML detected during processing. If just a single XML object was provided array will consist from a
single element. Additional tag and metadata arguments are provided to allow plugin full context
information so its able to implement required logic.

Developer can implement merging logic as it suits him/her best, with having several aspects in mind:

e if location is returned in result array, XML where tag was detected will still remain, although

adjusted to match the new definition (if it was changed at all)
o elements prior to location will be inserted before and elements after the location will
be inserted after

o if location is not returned in result array, it will be removed from document and provided
array will be inserted in its place

e tags defined within provided XML will not be analyzed (if tags need to be analyzed, new
processing will be required)

e custom templater-xml attribute will be removed from the output XML not to cause “file
corruption”

e correct OOXML node elements must be provided. Templater will not validate XML nodes for
OOXML correctness

e its expected to mutate location argument as Templater will check it for instance reference
and sync provided value to original XML

Java XML custom setup

Templater will use default Java XML library unless configured to use some other library. Even Java 11
specific APIs will be used to setup the default library?l. Android requires specific dependencies before
it can work, as it does not have support for javax.stream out of the box. This can be fixed by adding
some relevant dependency, eg: “stax:stax:1.2.0". Templater will use specific order of initialization:

21 Templater is Java 8 compatible so it uses reflection to call into Java 11 APl when available

36

[[T11 TEMPLATER

e if Java 11 APl is detected, XML will be configured via new API

e if Java specific version of Xalan library exists Templater will try to initialize itself via it since
this is the only supported XML library

e when neither of those are available, default XML library will be used. It should be noted that
custom dependencies often register their own XML library which can cause problems during
the startup

There are two aspects to XML initialization:

e passing in fully configured factories - no further configuration will be performed by
Templater and factories will be used as is
e passing in default factory instances and let Templater further configure them
o Templater will perform various configurations regarding namespace use, security
setup (to prevent XML attacks) and namespace validations
o if afactory fails to be configured due to unsupported feature, this can be override on
call by call basis in the provided factory instance

APIs for configuration are:

DocumentFactoryBuilder xmlBuilder(DocumentBuilderFactory builder, boolean
isFullyConfigured) throws ParserConfigurationException;

DocumentFactoryBuilder xmlTransformer(TransformerFactory transformer, boolean
isFullyConfigured) throws TransformerConfigurationException;

DocumentFactoryBuilder xmlReader(XMLInputFactory readerFactory, boolean
isFullyConfigured);

DocumentFactoryBuilder xmlWriter(XMLOutputFactory writerFactory, boolean
isFullyConfigured);

Type visibility requirements

Templater can navigate over public fields/methods. Objects passed into processing don’t need to be
public, but only public properties will be used for navigation. Due to Java reflection changes, this will
stop working in future Java versions unless class is public. This can be enforced by changing default
configuration to prevent non-public type usage via:

IDocumentFactoryBuilder TypeVisibility(bool onlyPublic);

If enabled, tags in non-public classes will not be recognized. Its best practice to enable this
configuration, since it prevents performance degradation due to reflection visibility changes.

Streaming size
Templater supports streaming in multiple ways:

e streaming data types (collections without a known size or database readers)
o flushing output during text processing

IDataReader and ResultSet will use streaming size to process rows in chunks of specified size.

37

[[T11 TEMPLATER

If a collection is used which does no implement appropriate interface:

e |Collection in .NET (for Count property)
e Collection/Array in Java (for size method)
e Seqin Scala (for size method)

as long as elements of the collection are not IDictionary or Map they will be processed in chunks.
Default chunk size is 16384. Custom chunk size can be configured via

DocumentFactoryBuilder streaming(int size);

Built-in navigation, metadata and handler plugins
While formatters, navigation expressions and handlers are only invoked on matching metadata, if
they are not useful, they can be disabled via

DocumentFactoryBuilder builtInNavigation(boolean include);
DocumentFactoryBuilder builtInFormatters(boolean include);
DocumentFactoryBuilder builtInHandlers(boolean include);

While their overhead is not significant, if there is no use for them, they can be turned off.

Built-in low-level plugins
Due to platform specific image conversions, low level plugin for their conversion is enabled by
default. For performance reasons this can be disabled and Templater image type can be used instead

DocumentFactoryBuilder builtInLowLevelPlugins(boolean include);

By default System.Drawing.Image In .NET and java.awt.image.Bufferedimage will be converted into
Templater specific Imagelnfo type. When working with Android or special .NET platforms this needs
to be disabled.

Custom navigation character
Default navigation character is DOT (.). In cases when some other character is more appropriate (so
tags are more readable) this can be changed via appropriate API:

DocumentFactoryBuilder navigateUsing(char character);

For example if navigation character is changed from DOT into SLASH (/) tag equivalent to:
[[collection.item.description]] would look like: [[collection/item/description]].

Tag regex customization
Templater matches tags via regex which can be customized. There are three built-in tag patterns
which are recognized:

e [[tag]]
o {{tag}}
o <<tag>>

38

[[T11 TEMPLATER

First format can’t be used on some places (such as Excel sheet names), but if Templater detection
needs to skip over some tags they can be disabled by modifying tag regex for specific pattern via

DocumentFactoryBuilder withMatcher(String regex, TagPattern pattern);

enum TagPattern {
/** [[TAG]] pattern */
BRACKETS,
/** {{TAG}} pattern */
BRACES,
/** <<TAG>> pattern */
CHEVRONS

}

Default regex pattern is: [-+@\w\s.,!?/:()|]+

To disable a pattern unmatchable regex can be used:
builder.withMatcher("[~\\S\\s]", TagPattern.CHEVRONS)

There are two similar methods for configuring matchers. Main difference is that one is a convenience
APl which will specify regex for all formats, while the other is for configuring regex per format. Since
by default Templater will recognize only latin (and some extra characters) when a language specific
matching is required, they can be enabled by providing relevant regex, e.g.:

builder.withMatcher("[a-z\u0400-\u04FF]+")

Java bean configuration
By default, Java beans are enabled, but if they need to be disabled this can be done via

DocumentFactoryBuilder withJavaBeans(boolean useConvention);

Exact method match takes precedence over bean naming, so there is little reason to disable bean
naming.

Member blacklisting

While Templater supports navigation over zero argument methods, fields and properties, sometimes
it’s useful to disable navigation over certain fields or methods. This can be done via blacklisting API
by registering all the methods on which the navigation is disabled. Common use case for such a
feature is to disable navigation to sensitive information such as
getClass.getProtectionDomain.getCodeSource.getLocation which could reveal some sensitive
information in Saa$S products. Blacklisting is done via

DocumentFactoryBuilder blacklist(Member member);

SVG fallback conversion

Microsoft Office 2016 introduced support for vector graphics via SVG standard. While image will be
displayed in new Office versions as expected by default, it will not work in older Office versions
without a fallback image. To provide a fallback image SVG conversion must be registered during

39

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics

[[T11 TEMPLATER

initialization which will convert SVG document into an image so Templater can include both new SVG
XML and old image format in the document. There are various 3™ party libraries for SVG
conversions?2. Conversion is registered via

DocumentFactoryBuilder svgConverter(SvgConverter converter);

Where SvgConverter is type with relevant method:

interface SvgConverter {
ImageInfo convert(Document svg);

}

In .NET conversion is done via similar API:

IDocumentFactoryBuilder SvgConverter(Func<XDocument, ImageInfo> converter)

Imagelnfo type is Templater specific image type which has a builder API in Java. An example of
initializing can look like:

return ImagelInfo.from(os.toByteArray())
.extension("png")
.height(t.getHeight())
.width(t.getWidth())
.build();

Spreadsheet specific configuration
While most configuration options work across all file types, sometimes there is a need for options
specific to file type. In case of spreadsheets there are two configuration options:

e Limiting number of created sheets
e Explicitly ignoring all formula warnings
e Explicitly ignoring all number as text warnings

This spreadsheet specific options can be accessed via
ISpreadsheetConfigurationBuilder ConfigureSpreadsheet();
during configuration setup.

By default, there is no limit on number of newly created sheets, but when there is a need to restrict
it, this can be done using

ISpreadsheetConfigurationBuilder NewSheetsLimit(int maximum);

If a resize operation detects that there were more newly created sheets than specified via this limit
an ApplicationException/RuntimeException will be thrown with a relevant message.

22 pictures example: https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/Pictures
contains code for SVG conversion via external libraries

40

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/Pictures

[[T11 TEMPLATER

When formulas are moved around/adjusted they might end up in a state which Excel considers
inconsistent. If this is a false positive, such warnings can be turned off via specific configuration
option:

S ————
5 1 ,r’ 100,00% | 13.4!
51 - =4
IT: Inconsistent Formula 4

— Copy Formula from Left -
IT: Help on this Error
52 Ignore Error

— Edit in Formula Bar —

Error Checking Options...
[i nneE|

ISpreadsheetConfigurationBuilder FormulaWarnings(bool ignore);

In case when ignore is set to true, Templater will enable ignoring formula warning on all sheets
containing formulas, which will prevent Excel from reporting warning on them.

Another common Excel warning is when text has the number entered as value. Since its common
mistake that people put in numbers as text, Excel will often warn about this too.

B3 - j = 0123465

Code
| [5[o122465 |

Mumber Stored as Text

Convert to Mumber

Help on this Error

Ignore Error

Woea =l Choown ks b

Edit in Formula Bar

—
]

- Error Checking Options...

To turn off this suggestion, there is relevant configuration option:

ISpreadsheetConfigurationBuilder NumberAsTextWarnings(bool ignore);

Document signing
Reporting team and Enterprise license allow for document signing. Office documents can be signed
with user defined certificates. Common use case for signing would be to show document authenticity

41

https://support.microsoft.com/en-us/office/fix-an-inconsistent-formula-5dd940a1-4f87-44bd-91dd-bf45ed828f05
https://support.microsoft.com/en-us/office/fix-an-inconsistent-formula-5dd940a1-4f87-44bd-91dd-bf45ed828f05

[[T11 TEMPLATER

by having proof of origin. Signature will be valid as long as signing certificate is recognized and
document was not modified after the signing?. Signing requires certificate with private key
information and is done via

DocumentFactoryBuilder sign(X509Certificate mcertificate, PrivateKey privateKey);
and in .NET via
IDocumentFactoryBuilder Sign(X509Certificate2 certificate);

If certificate is not recognized it will be shown as recoverable since it is not trusted.

Home Insert Page Layout References Mailings Review View Developer Templater Ue

o Marked as Final An author has marked this document as final to discourage editing. Edit Anyway x

Wq.1.|.2.|.3.|.4.|.E.|.5.|.;.|.5.|.;..|.1:..|.11.|.12.|.13

Signatures v X

| 0 0 0 0 0 0 0 T 0 0

gﬂﬁ Recoverable error:

templater.info 27.2.2021.

e

9 "
| S| I— o

Certificate not trusted - The certificate used to sign was issued by a
- certificate authority thatis not in your trusted list.

Signature type: XML-DSig
Z Click here to trust this user's identity.

R Signing as: templater.info :
- See the additional signing information
- that was collected. ..

Templater Editor integration
Reporting team and Enterprise license allow for Templater Editor integration. This is useful for
embedding schema of the model into the document which then allows for tag listing within the

Templater Editor. This greatly simplifies document preparation, as available tags are listed within the
Microsoft Office, plus additional validations can be performed due to known schema and
relationships. Templater Editor integration is configured via

EditorConfigurationBuilder configureEditor();

where specific configuration options can be set-up. At the end of the editor configuration it should
be specified if schema is being embedded in the document or not via

DocumentFactoryBuilder configure(boolean embedSchema);

23 Excel often recalculates cell values/tables/pivots which cause signature invalidation. For this reason
Templater will change formula evaluation to manual after processing

42

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/TemplaterServer

[[T11 TEMPLATER

When schema is being embedded into the document, instead of changing the document via resize
and replace API, tag list will be constructed based on the calls to high level APl and embedded into

the document. When there is infrastructure for testing if the uploaded document is valid (checking if

used tags are available), this can be reused for embedding schema into the document. When
providing template to the user or administrator it’s expected to first run schema preparation.

When schema is not being embedded into the document, previously defined schema will be removed

and thus tag list will not be available. If Editor is not configured during initialization, schema will not

be considered during processing, meaning if it exists in the document, it will remain in the document

unchanged.

Tag management
Templater Editor allows for user defined tags via Manage tags button. This can be disabled via

EditorConfigurationBuilder tagManagement(boolean allow);

Once disabled, user can only work with previously defined tags, which ought to be embedded via
embedding schema step. It is recommended to disable tag management when schema is being
embedded. When tag management is not allowed, Import tags button will be disabled

Page Layout Formulas Data Review View Developer Templater Power Query Load Test Team
@ Matched tags: 19 {ﬁ Available tags: 16 ' ' . e
Yy = Tag listing
Show L Manage Run License Help
issues | S FrEvious »NEH tags @N’D C5Vs Templater
Search Tags About
Fe
- Anagerm
er.date]]_ . Available tags | Aligses
er.arganisation]]
er.product]] B[} <Object>
er.inArrears]] EI-'-_ data
er.age]] =
]_2 Total accounts
]_2 Total clients
]_2 Loan amaurt
ta.District]]

-] 2 Overdue total

-] 3 OLBtotal
- } fitter

Ab inAmears
Ab organisation

Al age

Ab pendinglnstalment

Ab date

Ab niext Instalment

Ab product

Changes: other

43

[[T11 TEMPLATER

Tag listing
Templater Editor can list available tags within the Office editor, which allows for easy drag-drop from
the list onto the document. This reduces the possibility for errors and allows exploration of which tag

is available. This can be shown via

EditorConfigurationBuilder taglListing(boolean show);

Once enabled, user will see available tags pane which also have search capabilities for easier location
of tags when there are many tags to choose from. It is recommended to enable this option.

@ Tag 3/19 in Cell {ﬁ Available tags: 16 g0 ‘ e
&y | = Tag listing | U
Show s g Manage Run License Help
issues | @ Previous ') Mext tags @ Mo C5Vs Templater
Search Tags About
J= | [[filter.product]] v
______E______J ¢ D E : Available tags v X
ter.date]] T
ter.organisation]] Find
ter.product]] 1 i)
Wl Drag an;l drop tag onto the cell onceyou find the
appropriate tag
ter.age]]
Tag =
data. Total accounts
ta.District]] [[data.Branch]] [[data.Credit officer]] [[data.In arrears groy _ || (EEERGIC R0
data.Loan amount
data Overdue total E
data.OLB total
filter inAmears
filter organisation
filter.age =
filter pendingInstalment
= i
e fitter.date -
5 Explanation Aging Details Lodila] m | »]
Tag detection

Tags in templates are only recognized when tag detection is enabled. When enabled Templater
Editor will continuously scan document on changes to check if there are new tags. For large
documents this can take some time, but for templates it should be rather quick. This can be enabled

via

EditorConfigurationBuilder tagDetection(boolean enabled);

Once enabled, Templater Editor will analyze document for tags, report how many tags were detected
in the document and allow navigation over tags. When paired with issue detection, it will provide
excellent user experience as problems will be detected and explained so that user is able to resolve
them. Best practice suggestion and common warnings will also indicate possible improvements in the
template. It is recommended to enable this option.

44

[[T11 TEMPLATER

Issue listing
When tag detection is enabled, issues detected by Templater Editor can be listed so they can be
addressed. Issues will be listed when enabled via

EditorConfigurationBuilder issueslListing(boolean show);

Templater will scan documents for various known issues. Some are common, while some might be
rather specific. Issues will be listed in the Issues pane so that user can address them. It is
recommended to enable this option.

Debugging integration
Templater Action Log can be viewed in the Templater Editor. By default, debugging is disabled, but
can be enabled via

EditorConfigurationBuilder debuglLog(boolean capture);

Templater will embed entire action log which can be replayed step by step in the Editor. When this
option is activated, output document will look like the original template, but it will contain action log
of all captured operations.

Alias definition
Tag aliases can be defined via Templater Editor. When aliases need to be defined for a template, this
can be done via

EditorConfigurationBuilder addAlias(String prefix, String alias);

Using aliases simplifies tag usage as it can turn long cryptic tags into something short and readable. It
is more common to define such aliases in the template itself, but when appropriate this can also be
done via API.

Tag metadata resolution

While ideally tag names should convey the purpose, often it is not clear what they mean and when
they should be used just by reading tag name. To make tags easier to consume tags can be extended
with additional metadata:

e Status of the tag — by default tags are active, but if some tags need to be removed in the
future, they can be marked as deprecated. Inactive tags will not be shown in the tag listing,
unless specific option is enabled to list them (which is disabled by default)

e Type of the tag — while Templater can pick up tag types in most cases, there are cases where
it does not have enough information to provide actual type used in the application. For such
cases actual type can be sent via metadata which will be used instead of the detected one

e Description — longer explanation of the tag purpose can be provided via description
metadata. This is very useful to explain when to use it, how it should be used and various
other application specific information

45

[[T11 TEMPLATER

e Example — example values for the tag can be shown via example metadata. While this
information can be included in the description, this metadata is specific for the purpose of
showing example data

e Category — tags can be grouped in different categories which should simplify exploration of
tags and location of the appropriate tag

Metadata provider is registered via
EditorConfigurationBuilder metadataResolver(MetadataProvider customResolver);

interface MetadataProvider {
Map<String, TagMetadata> lookup(Object source);

}

and should provide dictionary of relevant metadata for properties/attributes of the requested

source. Source can be various things:

e signature of the class
e table metadata
o ResultSetMetadata/DataTable
e instance of the object being analyzed
o ResultSet/IDataReader/DataTable
o Dictionary/Map
o Collection

During analysis Templater will call into MetadataProvider and when metadata is returned will be
used instead of detected one (such as type signatures or property status) or will complement
information (with descriptions, examples, etc...)

Metadata can be defined via builder API:

val tableInfo = new MetadataProvider {
override def lookup(source: Any): util.Map[String, TagMetadata] = {
source match {
case ResultSetMetaData =>
val desc = new util.LinkedHashMap[String, TagMetadata]()
desc.put(
"Col B",
TagMetadata.builder()
.status(TagStatus.DEPRECATED)
.actualType(classOf[Integer])
.example("100")
.build())
desc.put(
"Col C",
TagMetadata.builder()
.actualType(classOf[BigDecimal])
.example("100.0")
.description("decimal number")
.build())
desc

46

[[T11 TEMPLATER

case _ =>
null

This is considered highly advanced usage of the integration, but provides the best experience for the
user.

47

[[T11 TEMPLATER

Templater Editor for Microsoft Office

While Templater does not need special editor, as templates can be prepared in any Office editor
which supports Open Office XML format, such as Microsoft Office or LibreOffice, using Templater
Editor provides additional safety from within familiar Microsoft Office interface. It’s also very easy to
test Templater behavior directly from within Word, Excel and PowerPoint by just passing in data via
Templater Editor user interface.

Templater Editor works on any Microsoft Office 2007 or later version which runs on Microsoft
Windows.

Installation and licensing

Templater Editor has a separate subscription license which is available only for customers with
Reporting Team or Enterprise licenses with active support subscription. Templater Editor can be
installed via download links on Downloads page:

e Microsoft Word Add-In
e Microsoft Excel Add-In
e Microsoft PowerPoint Add-In

Once installed, a new tab will appear in Office ribbon:

File Hame Insert Design Layout References Mailings Review View Developer Templater
Analysis disabled Analysis disabled rrl Available tags: 0
[[}1] &, I
~ License
4
Analyze Search Tags About

Only License button will be enabled at that point, until a valid license is entered in the Dialog which
appears after pressing the License button:

48

https://templater.info/downloads
https://templater.info/office/templater-word.exe
https://templater.info/office/templater-excel.exe
https://templater.info/office/templater-power-point.exe

[[T11 TEMPLATER

-

About Templater for Microsoft Office @

Licesnsed to:

[[T1] TEMPLATER

Installations [Activate subscription on this machine Templater Editor for Word
Version: 0.2.0.26352

Copyright © New Generation Software 2020

Product Usemame Machine Last used

All rights reserved.

‘warning: this computer program is protected by copyright law and international treaties. Unauthorized
reproduction or distribution of this program, or any portion of it, may result in severe civil and criminal oK
penzlties and will be prosecuted to the maximum extent possible under the law. =

To activate the license, press the Activate subscription button and enter relevant license information:

Licesnsed to:

TCAADI ATED Unlicensed

If11 Subscription @
Customer key lord
e_ License key
Eratic

Licensed to Rikard Pavelic
Licensedon SERVER

Please enter your customer key from the templater lic license file.

License key is a key provided explicithy far the Microsoft Cffice Addin
and has the 000000000000 format

fotivate Cancel

If correct license information is entered, Help button will be available, with others enabled
depending on the opened document:

File Home Insert Design Layout References Mailings Review View Developer Templater Help

ll ” Analysis disabled @ Analysis disabled Available tags: 0 . e

. License Help

.
»
Analyze Search Tags About

49

[[T11 TEMPLATER

Templater Editor needs to be connected to Internet to activate the subscription. It does not require
active Internet connection after, but it needs to validate the license at least every 30 days via active
Internet connection.

If support is renewed, Templater Editor will prolong expiration date for 1 year until next support end
date. If support is not renewed, Templater Editor will stop working after expiration date.

Schema

To get the most of the Templater Editor, a known schema is required. While Templater does not
require schema upfront before processing, it does discover one during processing which can be used
to embed such information into the document.

Schema can be defined manually via Manage tags button:

{ﬁ Aovailable tags: 0

= Tag listin
Manage g g

tags

after which new tags can be defined via Import tags button. The easiest way to define schema/tags is
to write relevant JSON into the editor:

i Tag import E@
Datainput |SQL | HTTP
{ -
"uger":{"name":"usemame", "age":42},
"beers": |

{'name"; "Double Bamel", "brewery"": "Cigar City Brewing”, "type": "American imperal", "rating": 4.5, "abv": 0.115},
{"name": "Rare Bourbon County”, "breweny”: "Goose lsland”, "type”: "Stout”, "rating": 4.3, "abv": 0.13}

4

Valid JSON. Tags found: 3 l

After which they can be added to existing schema by confirming import:

50

[[T11 TEMPLATER

P

[t Tag management E=ECH =5

={ } <Object:
EI{} user

MNewtags: 5 |

() Import tags J Removed tags: 0 Ok | | Cancel

Known tags can be listed via Available tags pane by toggling Tag listing button:

File Home Insert Design Llayout References Mailings Review View Developer [REGFEES Help Q Tell me 3 Share

[ﬂ]] Tags found: 7 @ Matched tags: 7 m Available tags: 9 0 . a
Mo problems detected 4
Tag Show Run

) Add or = Tag listing License Help
analysis [Detect partial tags jces | < P Next remove tags Templater
Analyze Search Tags About ~
_|-E-l-1-|-2-|-3-|-4-|-5-|-6-|-?-|-8-|-9-|-10-|-11-|-12-|-1]-|-14-|-

. -) Available tags e
i U Find
_ _A

Drag and drop tag onto the cell ance you find
l the appropriate tag

Tag

- Beer ratings given by [[user.name]] ([[user.age]]) username
:

beers

- : : : beers name
i ; ;

beers brewery

[[beers.name]] [[beers.type]] [[beers.rating]] [[beers.abv]:for beerstype
[[beers.brewery]] : i | mat(%.3f)] beers rating

beers.abv

Listed tags can be dragged dropped onto the document for easy template setup?.

Schema builder
While schema can be defined manually, it is expected that schema is defined via Templater
integration using configuration options in the builder API.

To embed schema into the document Templater configuration needs to be configured via

24 Some controls (such as WordArt) do not allow drag-drop, so old method of writing tag manually must be
used

51

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

EditorConfigurationBuilder configureEditor();

which needs to be setup for schema embedding via
DocumentFactoryBuilder configure(boolean embedSchema);

Suggested way to setup such factory is to have separate factory configuration specialized for
embedding schema into the document which would look something like:

DocumentFactory factory = Configuration.builder()
.configureEditor()
.taglListing(true)
.configure(true)
.build();

Reference on how to setup schema embedding can be found in the Github examples.

Aliases

Templater Editor allows alias definition which is useful when dealing with long tags (or tags with long
navigation) in Word tables. By default, table cell will try to accommodate all text within the cell,
which often means will stretch too wide.

+

Product Price
[[store.items.product.info.name]] [[product.price]]

,

Available tags | Aliases

Found tags
store items . product infa product

To work around this problem, a shorter tag can be used which will be auto-expanded by Templater
during processing.

Tag aliases are especially useful when dealing with complex tag paths which leverage navigation
expressions. Instead of writing explicit tags which includes sorting, limiting and various other options,
e.g.:

[[store.items:sort(price):top(10).product.info.price]]
It is much easier to work with tag such as:

[[product.price]] which hides the technical details of sorting and limiting only first 10 elements
behind the alias.

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria d.d.
Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

52

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/TemplaterServer
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/DepartmentReport

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

Tag analysis

Main feature of Templater Editor is tag analysis and issue detection. This is available via first group in
the Ribbon menu. If Tag analysis is enabled, Templater will continuously check document for tags and
various issues with tag setup:

[ﬂ]] Tags found: 91 @
Tags with problems: 91
Tag

Show
analysis [Detect partial tags joopec

Analyze

For analysis to be truly useful Templater must be aware of schema which is available. Otherwise all
detected tags will be reported as unknown:

[ﬂ]] Tags found: 7 @ Matched tags: 7 {ﬁ Available tags: 0 0 . e
Tags with problems: 7 [
Tag J P Show 4

.= Tag listi
] . . Add or 297 Run License Help
analysis [Detect partial tags jeopes %2 Previous » Mext remaove tags Templater

Analyze Search Tags About

Tag analysis

Number of issues detected: 7

Tag Description
Unrecognized tags

'ﬁ [[user.name]] There are no available tags.Please first setup available tags.

@ [luser.age]] There are no available tags.Please first setup available tags.
'Q [[beers.nam... There are no available tags.Please first setup available tags.
'Q [[beers.bre... Thera are no available tags.Please first setup available tags.
'Q [[beers.type]] There are no available tags.Please first setup available tags.
'Q [[eers.rati,.. There are no available tags.Please first setup available tags.

'ﬂ [[beers.abv]... There are no available tags.Please first setup available tags.

I.|-§-|-1-|-2-|-3-|-4-|-5-|-5-|-?-|-8-|-9-|-10-|-11-|-12-|-13-|-14-|- .

- -) Available
; Find

- —_— Drag and drop t
. the appropriate
% Tag

- Beer ratings given by [[user.name]] ([[user.agel])

With schema, only actual issues will be reported, such as typos:

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria d.d.
Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

53

[[T11 TEMPLATER

[ﬂ]] Tags found: 7 @ Tag 2/7 in Document {ﬁ Available tags: 9 ' ‘ . o
Tags with problems: 1 .
Tag Run

4 = Tag listin
Show Add ar “ J License Help

analysis [] Detect partial tags issLEs 4 Previous » Mext remove tags Templater
Analyze Search Tags About

Tag analysis

Mumber of issues detected: 1

Tag Description
Unrecognized tags

0 [[user.ag]] Did you maybe wanted to use: user.age

I.|-§-|-1-|-2-|-3-|-4-|-5-|-5-|-'.'-|-&-|-9-|-10-|-11-|-12-|-13-|-14-|- .

= —) Available
,: Find

- — Drag and drop t
m the appropriate
- Tag

. , , wer |
- Beer ratings given by [[user.name]] ([[user.ag]]) user.name

_ user.age

Templater Editor will recognize all kind of issues and suggest resolutions to them.

When Detect partial tags checkbox is enabled, Templater will also perform search for common tag
typos, e.g.: writing [[user.age] with last bracket missing, or even [user.age] with both first and last
bracket missing.

Some of the issues/warnings/suggestions which will be recognized by Templater Editor:

o Typos — with suggestion for alternative tag which is similar to the typo

e Partial tags — tags which are missing second bracket or similar problem

e Usage of multiple collections within a same table/chart — this will result in cartesian product
which is most likely not wanted

e Alias suggestions — when alias is defined, it is suggested to use it on tags which match the
alias prefix

e Bad tag placement —in some cases tags are placed in a location which will cause problems

e Wrong headers/footers — aggregate tags should be used in such locations, instead of tags
used for resizing

e And many others...

Tag navigation
By clicking on the issue in the list, Templater will position the cursor on the problematic tag which
allows for easy issue resolution.

54

[[T11 TEMPLATER

Previous and Next buttons will allow navigation over all detected tags in the document. Search bar

can be used to narrow down the search for a subset of tags:

®0

[ﬂ]] Tags found: 55 @ Tag 2/5 in Cell {ﬁ Available tags: 0 l '
Tags with problems: 55 L fee = Taq listing)
Tag] ow .) Add or Run License Help
analysis [] Detect partial tags oS « Previous * Mext remove tags @ Show C5V Templater
Analyze Search Tags About
ua = I [[loanAccounts.account.feeOverdue]]
a R 5 T U V'
1
2
Overdue Principal| Overdue Interest| Penalty Amount Fee Amount Overdue Fee | Days in Arrears |

- - - -

3 -

-

.overduelnterest]] unt.feeAmount]]jint.feeOverdue]]

a4 I.overduePrincipal]] .penaltyAmount]]

[[loanAccounts.a{[

3

With many tags present in the document, toggling Tags with problems button will instead search

only through tags with some issues, although that is similar to going over issue list®°.
Some tags are embedded within the xIsx/docx document:

e csv tags used for PowerQuery/Get&Transform in Excel

e xlIsx tags used for charts in Word

While navigating over tags, Templater will open up embedded document and show tags. Embedded

CSV tags be read only, while chart tags can be edited.

Tag listing

With known schema, Templater can show listing of common tags?®. Users can use this list to search

for relevant tags and then drag/drop them onto the document.

Searching for available tags can be expanded by toggling the search button which will show the

advanced search options:

%5 Single tag can have multiple issues and can be reported multiple times in Issues list

26 Not all possible tags can be listed, as navigation can be done over recursive types and thus list would be

indefinitely long

55

A B

1 |Date [[loans.filter.date]]

2 |Organisation [[loans.filter.organisation]]

2 |Product |[[Ioans.ﬁlter.prot!uct]]

4 |Age [[loans.filter.age]]

5 |Next [[loans.filter.nextinstalment]]
(5]

78l Total accounts BlTotal clients [lioan amount B8l overdue total Elois!
: [[loans.data.Total i [[loans.data.Total [[loans.data.Loal [[loans.data.Overc [[lo:
g -

10

11

12

13

14

15

16

17

18

19

20|

21|

22

23|

24
25

loans | deposits | @

[[T11 TEMPLATER

Available tags R

Find fitter @

Drag and drop tag onto the cell once you find
the appropriate tag

Advanced search

Description

Exclude objects, collections and tables

Only active tags
Matched tags: 13
HAvailable tags: 27

»

Tag

loang filter date

loans filter organisation

loans filter product

loans filter inAmears

m

loans fiter aae

loans filter nest Instalment _ 8

loans fitter pending Instalment

deposits fiter date

Additional information can be embedded in the schema for each property/tag which will then be

available in the search window. This is done via

EditorConfigurationBuilder metadataResolver(MetadataProvider resolver);

explained in the Configuration section.

Running Templater

It is very easy to test templates by running Templater from within the Office Ul. Templater can be run

without predefined schema, but it does need input which will be used for processing. Currently the
easiest way to run Templater is to paste relevant JSON into the text box, or reference the json file

locally on disk:

56

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER

Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info
[ﬂ]] Analysis disabled @ Analysis disabled m Available tags: 0 ﬁ . o g
'L__Q, <= Tag listing
Tag Show i 7 Manage Run License Help Upgrade
analysis [Detect partial tags |ssues 8 Previous Mewt ag 2mplate

Analyze |
[111 -3 13- A
— ; : | { } Marualinput Fle | 5QL | HTTP | Javascrpt | | E
] {
= Default entry "uger”: { "name": "Bob Bardey", "age": 42"},
i "beers™: [
- "name": "Rare Bourbon County Brand Stout”,

"breweny": "Goose Island Beer Co.",
"type'™ "Stout”.

"rating": 4.5,

"abv": 0.13

"name": "Double Bamel Hunahpu's",
"breweny": "Cigar City Brewing”,
"type": "American imperal”,

= "rating”: 4.5,
- "abv™: 0.115
” H
- 1
- }
2l Beerratings ‘
- Valid JSOM. Tags found: 5
=
Beer Name Create debugging session
- [[beers.name]] Neers.type sers.rating] sers.abv]:
. [[beers.brewery]] mat(%.3f)]

Upon processing Templater Editor will show the processed file which in this case should look like:

i

Beer ratings given by [[user.name]]([[user.age]])

Beer Name Type Rating {0-5) ABV
[[beers.name]] [[beerstype]] [[beersrating]] [[beers.abv]-for
[[beers.brewery]] mat(%.3f]]

Processing options
There are several options for processing:
e manual JSON or XML input
e selection of file with JSON/XML content

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria d.d.
Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

57

[[T11 TEMPLATER

e SQL query
e HTTP request
e Javascript code (which can use XMLHttpRequest for API requests)

Using right click on entry list will provide additional options:
e adding/removing entries
e showing/hiding entry details
e saving entries configuration into document

Entry configuration will be saved encrypted into document which allows saving of sensitive
credentials.

| Manual input | File | SQL | HTTF | Javascript

Javascript evaluation is supported.

eneral stats S i
g This is useful for complex processing.

var req = new XMLHtpRequest();
req.open('GET", "https.//catfact herokuapp comfacts™, false);
req.send();

cat facts| var result = frend: reqresponse datal;

Mew entry

Duplicate entry
Remuove entry
Hide entry details

Save configuration

14|

Walid JSOM. Tags found: &

[] Create debugging session

Custom plugins
Templater Editor can be set up with user defined plugins, which add relevant formatters, navigation
expressions and all other customization options.

To setup Templater Editor with custom plugins, two prerequisites are required:

e zip file containing dll(s) which will be used (or a single dll)
e |ocation where zip/dll will be hosted

Project should be set-up in “legacy” .NET Framework 4.5+. Editor configuration must be performed
via class which looks like:

58

[[T11 TEMPLATER

public class TemplaterEditor

{

public TemplaterEditor()

{

}

public void Configure(IDocumentFactoryBuilder builder)
{

//setup the build with custom plugins

}

IDocumentFactoryBuilder is the same interface as the one in Templater, with one minor difference,
that is has no Build methods. If plugin configuration requires configuration per extension, instead of
empty constructor, constructor with string argument can be used. Templater Editor will scan for
public class named TemplaterEditor and call it before running Templater processing.

When license is configured with plugin location (which can be http(s), ftp or location on
disk/network) a new button will be visible in the Ul:

[fJ1 Execute Templater processing

{ } Manual input |Fi|e |SQL I HTTP |..la'u'ascrip°t|

! You can paste or drag/drop JSON/XML data snippets here.

The input represents actual data sent for processing.

Process J | Cancel

O Debugging "/F‘Iugirls

Custom plugins enabled
Location: O:/Templater/CustomPlugin.dll

59

NEW GENERATION SOFTWARE LTD

Vladimira Vari¢aka 3, 10010 Zagreb, Croatia

Debugging Templater
While Templater has only two basic operations: resize and replace, when there are many such
operations, it helps being able to compare documents across them. For this purpose, Templater has a
debugging capability which allows inspection how document looked at any point in time during

processing.

[[T11 TEMPLATER

https://templater.info

Debugging session can be created directly from the Templater Editor by selecting the Debugging
toggle on the Run Templater screen:

Analysis disabled
3
48 Previous WP Next
search

m

Manage
tags

Available tags: 0

.= Tag listing
un
@ Show C3V Templater
Tags

© [[departm — :
i1l Execute Templater processing
: D i

wartment.h

ne]j

{}

Default entry

License Help

About |

Manual input | File

| saL

| HTTP I Ja\rasc:iptl

{

"name"; "Sweat shop ftd.",
"department™: [

{

"name": "Development™,
"code™: "DEV",
"head": "Michael",
"team™: [
"name"; "React”,
"lead": "John",
IijEd": [

"name": "Soda shop”,
"epic™ [

"name"; "Rewrite",
“task": [

4

{"id": "BR-343", “estimate™: 2.0, "spent™ 0.5},
{"id": "BR-346", “estimate": 7.0, "spent™: 35 }.

Valid JSOM. Tags found: 16

) Debunging ‘ "/Plugins

When this feature is activated,
Templater will create document with all operations performed on the template listec
By browsing through the activity pane one can inspect how document looked as am
This is very useful for analyzing why the resulting document does not look as expect

Once processing is finished, a new document will open with Actions pane which allows to recreate
document at any point in time:

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria d.d.
Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

60

NEW GENERATION SOFTWARE LTD
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia

A | B | ¢ | D | E|F|] 6 |H | T|J|]K|JL|M|N]O]J] P |
Development
1
2 Head Michael
37
4 React Lead: John
57 Project Epic Duration Task Estimate Spent Epic health Project health
r r
& BR-343 z,ol 0,5
7 BR-346 7,0 I 3,5
s BR-349 12,0 I 15,0
g BR-423 1,0 I 0,5
— Rewrite 234,5 1,8
10| BR-443 20,0 I 35,0
1 BR-466 70,0 . 120,0
~ |Soda shop 1,7
12 BR-481 6,0 I 0,0
= BR-482 10,0 I 60,0
T r
14| BR-245 s,ol 6,0
15 BR-301 10,0 I 12,0
] New product search 23,0
16| BR-302 2,0 I 1,0
17 BR-305 5,0 I 4,0
18 |Total manda 257 A0 md
| summary | DEV | sAE [oA | @ [«] [v]

[+]

[[T11 TEMPLATER

https://templater.info

Actions v %

Find

Double-click row bellow to set processing at
the relevant step. Right click for more options

& Action Description -
249 | Replsce | department feam.pry...
250 | Replsce | department.feam proy...
257 | Replsce | department.feam proy...
252 | Replsce | department.feam proy...
253 | Replsce | department.feam proy...
254 | Replsce | department.feam prof.
255 | Replsce | department.feam proy...
25 | Replsce | depardment.feam proy..
257 | Replsce | depardment.feam pry..
258 | Replace | depardment feam pry..
Z58 | Replsce | depadment feam pry..
J60 | Replace | depardment feam pry..
F67 | Replace | depardment feam pry..
J62 | Replace | depardment feam pry..
F63 | Replace | depadmentfeam pay..
J64 | Replace | depardment feam pro..
265 | Replsce | depardmentieampry..
266 | Replsce | department feam pry..
267 | Replsce | department feam pry..
268 | Replsce | departmentfeam pry. H

B! Replace

Search filter can be used to find appropriate action. By expanding details more information will be
displayed about selected action:

A | B | ¢ | D | E | F | G | I |J|K|L M| N ©O]| P
Development

1

2 Head Michael

3_

» |[React Lead: John

5_ Project Epic Duration Task Estimate Spent Epic health Project health
BR-343 2,0 I 0,5

7 BR-346 7,0 I 3,5

8 BR-349 12,0 I 15,0

D BR-123 1,0| 0,5

— Rewrite 234,5 1,8

10| BR-443 20,0 I 35,0

1 BR-466 70,0 . 120,0

— |Soda shop 1,8

12| BR-481 6,0 I 0,0

13 BR-482 10,0 I 60,0

T r

14 [[departmenttimated]] isk.spent]]

15 [[departmenttimated]] isk.spent]]

= New product search 0,0 #DIV/O!

15 [[departmenttimated]] isk.spent]]

17 [[departmenttimated]] 1sk.spent]]

12 |Tntal manda: 234 A0 md

| Summary | DEV | Sheetd | Sheets ‘ @] [v]

[+]

[

Actions

Find

res

- %

&

Double-click row bellow to set processing at
the relevant step. Right click for more aptions

Action details
Operation

Action

38/269 (14.1 %)

Duplicate tags 3x

Tag

department.t;
department .t
denartment.t

-

eam.project.epic.task.id EI
eam.project.epictask....
eam.nroiect.enic tack.s

Action Description |
7 Aesize duyplication

& Fesize

& Fesize n
10| Aesie)

Fesize

duplication

8 duplication
57 duplication
83 duplication
94 duplication
102 duplication
104 duplication
112 sharing

This kind of inspection into Templater processing allows for easy problem resolution and quick

development loop.

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria d.d.
Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

61

[[T11 TEMPLATER

Word features

Templater has extensive support for various Word features, but there are still few advanced ones
missing. Various features are supported out-of-the box without any special code, while some require
special handling and are introduced over time.

Mail merge

On surface Templater looks just like a mail merge solution. You can put tags on specific places in the
document and replace them later with actual values. One could wonder why a library would even be
required for that, as OOXML is just a ZIP file with an XML files which can be easily
edited/manipulated.

But even in such a simple use case there are obstacles, as Word tends to split text into paragraphs so
even a simple text such as [[TAG]] often looks like

<W:r w:rsidRPr="00A42204">

<KW:rPr>
<w:lang w:val="en-US"/>
</wirPr>
<wit>[[</w:t>
</wir>

<w:proofErr w:type="spellStart"/>
<wW:r w:rsidRPr="00A42204">
<W:rPr>
<w:lang w:val="en-US"/>
</wW:rPr>
<W:t>TAG< /w:t>
</wW:ir>
<w:proofErr w:type="spellEnd"/>
<w:r w:rsidRPr="00A42204">

<KW:rPr>
<w:lang w:val="en-US"/>
</wirPr>
<w:t xml:space="preserve">]] </w:t>
</wir>

which contains various “useless” Word specific information not really relevant for the original [[TAG]]
text. There are also various Word specific rules such as xml:space="preserve” which must be
respected during processing.

Once tables and lists start to get used, replacing a tag is no longer: “just locate and replace tag value
in XML”. With the addition of images, special Word objects, such as charts which are implemented as
an embedded Excel file within the Word zip changing tags requires extensive knowledge of the Word
behavior, format and rules. Therefore, a library which copes with those adjustments can be of quite a
big help to the developer, even if his is quite familiar with the OOXML format.

62

[[T11 TEMPLATER

Resizable regions
Templater uses various Word features as indicators for the duplication behavior. The simplest

example would be to use row in a table as resizing region - a context. More complicated example

would be a list in a table surrounded by section breaks. To understand resizing behavior of Templater

few rules must be understood. When Resize(tags, count) is called Templater will

find the best matching region of the document which encapsulates all specified tags (first
occurrences of such tags)
o regions will be limited to the rows in a table (match for starting and ending row)
= table region can span multiple rows
o relevant list levels will be matched
= list levels can match the hierarchical structure of the model
o Repeating Section Content Control resizable object can act as a container for group
of tags
o Listable Content Controls (ComboBox and DropDown list) — will behave as a simple
list like object
o embedded document will act as a natural grouping for tags, although it will act as
resizable regions on its own
o when region includes top level document (there is a tag which is neither in list or a
table) sections around the region will be looked up
o if section is not detected, start/end of the document will be used
if all tags are inside tables/lists or other resizable elements, instead of duplicating the
objects, tables and lists will be resized instead
o this means when a same collection is repeated both in a table and a list, that those
tables and a list will get new rows instead of new tables and lists being created in the
document
when count = 0 indicating removal of the content part of the document will be removed
o with the exception when tags were detected at the top level and no sections were
found - which would result in whole document removal
o Word has a special behavior for removing “drawing” objects such as TextBox, images
and WordArt. When resize with count = 0 is called on them, as long as only they are
referenced, instead of finding the best section, Templater will just remove those
objects

This way built-in Word features can be used to indicate the expected resizing context for the

Templater. Common use cases include:

use of a table without borders to group elements together

o tableis visible in Word, but not in the printed document
use of lists without bullet indicators to simulate paragraph duplication

o Word and Templater will consider it a list, but it will look like a plain paragraph
nesting list (or tables) inside a table for fine tuning nested elements layout
using table header repeating (and various other features) for tuning the listing behavior
using Repeating Section Content Controls as a simpler way to define regions

63

[[T11 TEMPLATER

e using sections (with or without page breaks)
o animportant aspect of sections is that section settings for current region are defined
at the end of that region/section, which gets copied on resize

Tags will be detected in almost any part of Word document, such as:

e header or footer

e Word arts

e embedded Excel, Word, html or txt files
e bounded custom XMLs

e hyperlink descriptions

e and various others

Tables
Most basic resizable object in Word is a table. Table can be with or without header; it can have
various options attached to it, such as:

e borders

e spacing

e repeating of header row
e cell/row breaking

e alignments

e automatic resizing

o styles

o cell merging

e textdirection

which makes it really useful to design complex layouts.
Resizing a table is quite intuitive in Templater. When table like:

‘ Column A Column B
[[collection.columnA]] [[collection.columnB]]

is matched with an appropriate input, e.g.:

{

"collection": [
{"columnA": "value A1", "columnB": "value B1"},
{"columnA": "value A2", "columnB": "value B2"}

]
}

The result will look quite intuitive:

\ Column A Column B
value Al value B1

64

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

value A2 value B2 |

A really important aspect of such transformation is:

e itisimplied by the document structure
e there are no loop or start/end constructs in the document
e it matches against the input “intuitively” by using dot (.) for navigation

Multi-row context
Over the years Templater context detection and manipulation improved significantly?’. This allowed
for context use over multiple rows, such as:

Product Price

[[items.name]] [[items.price]:format(N2)]
[[items.description]]

when matched with an appropriate input, e.g.:

{
"items": [
{"name": "Product A", "price": 99.99,"description":"Nice useful tool"},
{"name": "Product B", "price": 120,"description":"Spans\nmultiple\nrows"}
]
}

Produces an expected table which looks like:

\ Product Price
Product A 99.99
Nice useful tool
Product B 120.00
Spans
multiple
rows

and has several non-trivial features:

context is no longer a single row, but two rows, since tags were defined across several rows
simple number formatting can be used to tweak the output into expected format
bolding, italics and other text features were preserved

el

newlines in text input resulted in newlines in cell values

Common use case with displaying collections is that they include information from the parent object.
Templater can cope with various setups, even when provided data “is out of order”.

27 Various table examples can be found at: https://github.com/ngs-
doo/TemplaterExamples/tree/master/Intermediate/WordTables

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria d.d.
Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

65

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/WordTables
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/WordTables

[[T11 TEMPLATER

\ Product Price
[[items.name]] [[currency.signBefore]][[items.price]][[currency.s
ignAfter]]

[[item.picture]:image][[items.description]]

when matched with an appropriate input, e.g.:

{
"items": [
{"name": "Flashlight", "price": 19.99,"description":"Let there be light","picture":"flashlight.png"},

{"name": "Helmet", "price": 42.25,"description":"Protects the head","picture":"helmet.png"}

],

"currency": {"signBefore":"", "signAfter":"€"}

}

will result in an expected output:

\ Product Price

Flashlight 19.99€
Let there be light

Helmet 42.25€
Protects the head

This example includes two specific features:

e coping with out of order tags (“currency” was defined after the “items” part)
e inserting the image (via custom images plugin®)

In this example currency was defined on top level object (as sign which can go in front of the number
and as a sign which can go after the number). If “currency” was processed before the “items” it
would be a simple case of replacing the tags with € and duplicating replaced value per rows. But in
this case currency was defined after and it was expected that all rows have the same value, which
Templater detected and replaced them accordingly.

Tag for image was defined as [[items.picture]:image] which expects that there exists a plugin which
knows how to handle the image metadata by loading the image from the appropriate place and
putting it at the place of the tag. This way complex interaction between custom code (converting

28 There is no such builtin plugin in Templater, but developer can easily create/add their own

66

[[T11 TEMPLATER

,flashlight.png” into an actual image) and Templater (injecting the image into the document) worked
together to produce a complex output.

Dynamic resize
A special feature of Templater is processing specific input types (two dimensional collections and
DataReader/ResultSet) in a specialized way.

A basic use case for Dynamic resize would be to transform table template into a final output, e.g.:

[[table]]

when matched with an appropriate input, e.g.:

{
"table": [
['A", "B", "C"]
["A-1", "B-1","C-1"],
["A-2", "B-2","C-2"],
["A-3", "B-3", "C-3"]
]
}

it will be transformed into a table with 3 equal columns and 4 rows:

A B C

A-1 B-1 C-1
A-2 B-2 C-2
A-3 B-3 C-3

While this is useful for some scenarios, usually explicitly defined table templates are used since they
allow for more fine-grained tuning.

Dynamic resize can be combined with “standard” table templates which allows for best of both
worlds, as most of the table can be predefined, but some specific parts can still allow for dynamicizm:

[[row.a]] [[row.b]] [[row.dynamic]]

when matched with an appropriate input, e.g.:

{

"names": {"a":"Column A", "b": "Column B"},
"columns": [["Column X", "Column Y"]],
"row": [
{"a":"A1", "b":"B1", "dynamic":[["X1","Y1"]]},
{"a":"A2", "b":"B2", "dynamic":[["X2","Y2"]]}
]
}

67

[[T11 TEMPLATER

will result in table which is partly dynamic:

Al B1 X1 Y1l
A2 B2 X2 Y2

Cell merging
While cells can be merged in the template, there are use cases when they need to be merged during
table generation/population. For this reason, there are two built-in metadata plugins:

e merge-nulls - invokes horizontal cell merging when cell value is null
e span-nulls - invokes vertical cell merging when cell value is null

Cell merging works both in Dynamic resize and standard table resize. Table such as:

Column A Column B Column C
[[nulls.a]:merge-nulis] [[nulls.b]:merge-nulls] [[nulls.c]:merge-nulls]

when paired with input such as:

{
"nulls":
{"a":"A1", "b":null, "c":null},
{"a":"AZ", ”b":"BZ", "C":nu”},
{"a":null, "b":null, "c":null},
{Ila|I:IIA4II’ |Ibll:nulll "C":"C4"}

will result in table with merged cells:

Column A Column B Column C
Al

A2 B2

A4 Cc4

Existing merge cells
If there are existing merge cells in the table, Templater has specialized behavior for dealing with
them:

e if tag range does not touch start of a merge cell or goes beyond end of merge cells, merge
cell will be stretched

e otherwise context will be expanded to include merge cell(s)

e if tag is contained within the merge cell, context will include merge cells in minimum
spanning range

68

[[T11 TEMPLATER

Stretching merge cells in a table looking like:

Merge cell Col A ColB
[[num]] [[txt]]

When matched with an appropriate input, e.g.:

[
{ “num": 1’ IItXtII:IIAII }’
{“num": 2’ "tXt“: IIBII }

]

Will result in table with merge cell stretched:

Merge cell Col A ColB
1 A
2 B

If duplication instead of stretching is desirable behavior, but there are no tags in the first row, one
can add helper tag which will be hidden after processing, e.g. [[text]:hide]. This way minimum
context range can include additional rows and thus instruct Templater to behave differently in this
specific case.

This could look like:

Merge cell [[txt]:hide] Col A ColB
[[num]] [[txt]]

And would result in:

Merge cell Col A Col B
1 A

Merge cell Col A Col B
2 B

Removing a table

When Resize(tags, 0) is called on a table, relevant rows will be removed. Sometimes this means that
entire table will be removed, but often for table with headers which don’t have any tags the header
remains at the end of the resizing. In case when there is a separate header without tags a common
workaround is to add special tag on the header with collapse and hide metadata:

Product[[items]:collapse:hide]
[[items.name]] [litems.price]]

69

[[T11 TEMPLATER

This way when items collection is empty a separate resize 0 will be called just for the header row.
When collection is not empty hide metadata will take care of not showing any text in place of the tag.

There is also a common pattern to show a different table when there are no rows, but this is
explored in more detail later in sections part.

Lists
The second basic resizable elements in Word are lists. All lists types are supported:

e bullets
e numbered
e multi-level

Sometimes it’s useful to tweak the layout of the list so it looks like a regular paragraph, because
Templater will consider list a resizable element, while paragraph is not®, e.g.:

[[text]]
matched with an appropriate input:

[
{"text":"first row"},
{"text":"second row"},
{"text":"third row"}

]

will result in list which looks like an ordinary paragraph (list alignment is moved to the right):

first row
second row
third row

It is common to nest lists inside tables and while it is not common to nest tables within lists, that also
works as expected.

Nesting
Common use case for lists is pairing it with deep nesting or even with recursive structures. When
specialized data structure is used, such as:

public class Nest

{

public String value;
public Nest[] nested;

it is rather easy to pair it with nested list by predefining maximum nesting level, e.g.:

2% paragraph can behave as resizable elements if there are continuous sections around it in which case
everything between the sections will be duplicated

70

[[T11 TEMPLATER

1. [[value]]
1.1. [[nested.value]]
1.1.1.[[nested.nested.value]]
1.1.1.1. [[nested.nested.nested.value]]

Based on the input, resulting list will match the nesting levels and values, e.g. for input as:

[

{"value":"Level A-1", "nested":[
{"value":"Level A-2a", "nested":[] },
{"value":"Level A-2b", "nested":[

{"value":"Level A-3", "nested":[
{"value":"Level A-4a", "nested":[]},
{ "value":"Level A-4b", "nested":[]}
1}
I}

1}

{"value":"Level B-1", "nested":[
{"value":"Level B-2a", "nested":[] },
{"value":"Level B-2b", "nested":[] }

1}
]

a matching list will be created:

1. Level A-1
1.1. Level A-2a
1.2. Level A-2b
1.2.1.Level A-3
1.2.1.1. Level A-4a
1.2.1.2. Level A-4b
2. Level B-1
2.1. Level B-2a
2.2. Level B-2b

Since style is defined on the list, while Templater only binds the data with the list, complex list
representations can be easily constructed.

Lists in table
A very common use case is to have lists inside a table. The nesting can be arbitrary deep (up to the

resize limit configuration option).

Templater will take care of duplicating lists and renumbering them appropriately (when numbered
lists are used).

A common “trick” with nesting lists in a table is to use “invisible” tables - tables without border. They
will be visible in the editor, but not in the resulting document, e.g.:

71

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/ListsAndTables

[[T11 TEMPLATER

[[Namel]]

Work history:
3

[[Jobs.CompanyName]]
[[Jobs.CompanyLogo]:load-image]

List of projects:
s [[Jobs.Projects.Name]]
i [[Jobs.Projects.Tasks.Description]]

Coworkers:
Name ! Title
[[Nobs.Coworkers.Name]] i [[obs.Coworkers.Title]]

[[1obs.Coworkers.Impression]]

Multilevel lists in a table

List duplicated within a table will continue with numbering. If multiple lists are used to simulate
nesting Templater might not behave as expected unless the layout of the list is configured to match
the expected behavior.

Template configured with two lists:

1 \ 2 3

1. [[sports.name]]

1. | [[sports.events.name]] [[sports.events.description]]

when paired with matching input:

{
"sports":[
{"name":"Football", "events":[
{"name":"World Cup", "description": "FIFA World Cup is international tournament for national
teams"},
{"name":"European Champions League", "description": "UEFA club competition"}
1%
{"name":"Basketball", "events":[
{"name":"NBA", "description": "Men professional basketball league in North America"},
{"name":"Olympics ", "description": "Olympic basketball tournament "}

1}

72

[[T11 TEMPLATER

will result in output where both lists increase their numbering:

1 2 3
1. Football

1. | World Cup FIFA World Cup is international tournament for national

teams

2. | European Champions League UEFA club competition
2. Basketball

3. | NBA Men professional basketball league in North America
Olympics Olympic basketball tournament

To get the desired output a single multilevel list can be used. With some alighment adjustment via
multilevel list settings page

Define new Multilevel list (-8 [eE3m]

Click level to modify: Apply changes to:
1 . Whale list
- =]
3 ’ Link level to style:
4
5 111 (no style) (=]
B 1111,
; 11111, Level to show in gallery:
5 111,111, Level 1 B
1 U O P O B
11111111, Listhum field list name:
= 111111111,
Mumber format
Enter formatting for number: Startat: |q =
1 | Font... [¥] Restart list after:
Mumber style for this level: Include level number from: Level 1 IZI
12,3, ... |Z| IZI |:| Leqgal style numbering
Position
Number alignment: || .5 IZI Aligned at: g em = Follow number with:
Text indent at: 1,4 cm S | setfor an Leves.. Tab character =]
[&dd tab stop at:
1,4 cm =

| ok || cance |

73

[[T11 TEMPLATER

This way Templater will produce expected output:

1 2 3
1. Football
1. | World Cup FIFA World Cup is international tournament for national
teams
2. | European Champions League UEFA club competition
2. Basketball
NBA Men professional basketball league in North America
Olympics Olympic basketball tournament

Removing lists

Unlike table which often have special header row, lists are much easier to remove and there is no
need for any special workarounds. Calling Resize(tags, 0) on them should remove relevant part of the
document (and tweak the document when necessary so it doesn’t become corrupted).

Repeating Section Content Control
Since v6.1 Templater supports usage of specific Content Control intended for repeating regions of
the document:

{:? E Aa fa = 2 B Design Mode @ D

m Bl & Properties

Word COM _ XML Mapping Restrict
\dd-ins Add-ins | |C8 &5~ Pane Editing
Sdd-ins Caontrols Mapping Protect
"E"'i" ' 2 Repeating Section Content Control (%' 31 :10-1 -11.0 2120 L2

Insert a content control that
contains other controls and repeats
the cantents of the control as
needed.

H Region of the document which will be repeated

It can hEEt various other objects

+]

This Content Control is most useful when region need to be duplicated multiple times. If the main
purpose is conditional display (e.g., remove region when not necessary) than other ordinary Content
Controls can serve the purpose.

It is common to implement duplication of paragraphs this way, as Templater does not consider
paragraphs resizable regions, but when placed inside Repeating Section, they start behaving as
resizable region.

74

[[T11 TEMPLATER

This Content Control can be quite useful when combined with nesting; as tables, list and other
resizable objects can be used inside.

For example, template such as:

Title

L Text [[content control]]

= . |Z [[Iist.iten{i[[Iist.cbnditional item]] list details
. Item - Text 5
" [[table.item]] [[table.text]]

When paired with example JSON:

[
"content control": "element 1",
"list":[],
"table":[
{"item":"item 1", "text":"text 1"},
{"item":"item 2", "text":"text 2"}
]
1
"content control": "element 2",
"list":[
{"item":"list item X", "conditional item":""},
{"item":"list item Y", "conditional item":" and "}
1
"table":[
{"item":"item A", "text":"text 3"},
{"item":"item B", "text":"text 4"}
]
1

75

[[T11 TEMPLATER

will result in duplication of section region and duplication of table/list elements

Title

:| Text element 1

Item Text
item 1 text
item 2 text

:| Text element 2

s list item X list details
s listitemY and list details

+
Item Text
item A :text
item B text
+
Sections

When choosing a region for the context, Templater will look for sections around the specified tags.

Continuous sections are useful for separating parts of the document without affecting layout.
Sections are somewhat counterintuitive at the beginning as they are often applied with the text
above.

A common pattern when showing tables is to have different table layouts depending if there is data

inside or not. This is easy to implement by combining two tables and a section, such as:

No results found
[[table]:collapseNonEmpty]

[[table.name]] [[table.description]]
[[table]:collapseEmpty]

When there are no results, the second section will be removed and only the table with No results
found will remain. Otherwise when there is data inside the table collection, the first section will be
removed and the second table will be populated with data.

Sections are highly visible in Outline view:

76

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/WordTables

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

[

Cutlining Home Insert Page Layout References Mailings Review i Developer

Q' I:| Ruler Document Map q dﬂ] COne Page ._Ef', Mew Windc
4 Gridlines Thumbnails || ° 7= el Two Pages E Arrange All

Print Full 5creen Web [Outline| Draft Zoom 100%) ~ .

Layout Reading Layout [] Message Bar (=] Page Width Split

W

depending if there is data inside or not. This is easy to implement by combining
two tables and a section, such as:

@ No results found
@ [[table]:collapseMonEmpty]

Section Break (Continuous)

@ [[table.name]] [[table.description]]
@ [[table]:collapseEmpty]

Section Break (Continuous)
® When there are no results, the second section will be removed and only the

In modern Word versions section will be visible when non-printable characters are displayed:

AaBbCcDc | AaBbCcDc, AaBbCi AaBbi
Mo Spacing | TMormal | Headingl Heading

My Styles
71" Show/Hide T (Ctrl+*)
Wicrosoft-OfficeT Shu:uw paragraph marks and other
. Waord hidden formatting symbols.
*+ Excel) This is especially useful for
*—+ PowerPointl 4 anced layout tasks,
s Outlock
oy Srocessy

#— InfoPathy

e Tell me more
Sections can also be changed via Layout options, which is especially useful for managing ending
section of the whole document:

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

77

[[T11 TEMPLATER

File Home Insert Design Layout References Mailings Review View Developer Templater Help Q Tell me what you wanf]
TEEE e
Margins Orientation Size Columns LlLine Numbers - 2=lefe {0 am = “f Befors
vg - - - be Hyphenation - =€ Right: 0cm z *Z After: m Layout
Page Setup] Paragraph Section
"2"'1"'5"'1"'2"'3"'4"' Section start: Continuous

L H Suppress endnotiSuEITE
| Mew column

Headers and footers |MNew page

Even page
[] Different odd an oOdd ae

................................. Page Braak . Different first page
Header: |1,27 cm

From edge:
Footer: |0,51 cm

Page
Wertical alignment: | Top IZ|

Preview

Apply to: | Whole document IZ| [Lineﬂumbers...] [Borders...]

o) Cam)

Charts
Charts are represented by embedding Excel xlsx inside Word zip docx. Depending on the chart type
there is also some aggregation of values within the document XML.

Charts are also considered resizable elements, as the underlying data source is a resizable Excel
range.

Chart template is defined within Excel by adjusting original template and replacing values with tags,
which results in a bit unfriendly chart template:

Distribution
Distribution
= [[chart.value [[chart.value]] [[chart.distribution]]
1]

But once the underlying Excel is populated with data and range, the chart will be updated
accordingly:

78

[[T11 TEMPLATER

Distribution
Distribution
= Value A Value A 11,2
Value B 20,5
HValue B Value C 15,7
Value C

Tags defined within the Excel are visible in the Tags property on the ITemplater interface of the Word
document. This makes them transparent to the application/processing. This means there is no need
to unzip the docx file, process the embedded xlIsx files, but rather Templater does that behind the
scenes.

There are various charts in Word, such as pie charts, graphs and various others. They should all work
seamlessly through Templater.

Dynamic resize
While replacing chart values works fine, sometimes there is a need for dynamic number of series on
a chart. This can be implemented via at least 2 dynamic resize tags (for series, categories and values).

Example template can look like:

O G fr—
) A B c Db | E |
1 {{serl}}
o 0.8 2 |{lcatl®} {{data1}} .
0,6 3
d-_
04 5 |
0,2
4
0
{{catli}
B {{serl}}
O O

with relevant JSON, e.g.:

{
"serl": [["Ser A", "Ser B", "Ser C"] 1],

"catl": [["Cat 1", ["Cat 2" 1],

79

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

“datal":[[1,2,3],[4,5,6]]
}

will result in expected output:

Fm Chart in Microsoft Word * Chart Title

Ser C

Catl Cat2

M5 A HSerB mSerC

Word specific features

Links

Templater analyzes hyperlinks and thus they work as expected. Hyperlink can have multiple tags or
tag can be combined with static description, e.g.:

Link to [[description]]

Address is url encoded which means that [[specific_url]] is converted into
%5b%5bspecific_url%5d%5d when hyperlink is created, e.g.:

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

80

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/WordLinks
https://templater.info/%5b%5bspecific_url%5d%5d

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER

Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info
| Date | Link Email
Eﬂ ill [[date]-format] (%] [Link .namell | Lemail namell

in

Link to: Text to display: |<~:Selech’0n in Document:=:=

IRL

Look in: | template ﬁ
o [-] (@
Web Page ‘@ Links.docx
Current
Folder

Place in This
_ Document Browsed

Pages
Create New Recent
Document Files

Address: | PoSb%Sblink_url%5d®%5d

E-mail Address

Special data types can also be used to create simple links (just a link, no custom description) when
URI/URL is used as datatype.

Watermark
It is common to have watermarks on documents to indicate special state3’. Templater will detect and
replace tags in watermarks.

Example of watermark on invoice would look like:

30 |nvoices often have CANCELED or PAID written over them to emphasize their state, as shown in:
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/SalesOrderMVP%20(.NET)

New generation software Ltd, Vladimira Varicaka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852
81

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/SalesOrderMVP%20(.NET)

[[T11 TEMPLATER

Product Line total
[[Items.Product.Name]]i [[Items.Quantity]] . [[Items.Product.Price]] ' [[Items.Cost]:format(N2]]
Total | [[Totall:format(N2)]

o
Printed Watermark ‘ @lﬂ

() No watermark
(7 Picture watermark

Scale: Auto Washout
@) Text watermark

Language: | English {United States)

Text: [[Status]]
Font: Calibri

Size: Auto [=]

Color; |Z| Semitransparent

Layout: (@) Diagonal () Horizontal

App oK Cancel

Word ART/Smart ART

Tags can also be used in Word ART, Smart ART and other similar features.

There is special behavior with them on removal, as only referenced WordArt will be removed instead
of surrounding region of the document. If tags are located outside of WordArt too, removal will then
behave “the standard way”.

Footnotes and endnotes
While Templater supports footnotes and endnotes, it should be emphasized that their behavior is

non-trivial in a sense that the tags where they are defined is bound to the footnote/endnote
location, not the tag itself. This means that when footnotes are used in a table which gets resized,
the footnote will also be duplicated. If tag is used multiple times, Templater will take care that all
relevant tags are replaced with the expected value.

Header and footer

Tags can be used in header and/or footer along with other places in the document. Header and
footer do have some special behaviors, similarly to the tags placed in the top level of the main
document.

It's common to use footer to add page numbering to the Word document (as this is a Word feature).
Word will recalculate the page numbers once the document is opened.

82

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/WordLinks
https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/WordLinks
https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/MailMerge

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

Text Box
Tags are recognized within Text Box and other similar features.

There is special behavior with them on removal, as only referenced WordArt will be removed instead
of surrounding region of the document. If tags are located outside of WordArt too, removal will then
behave “the standard way”.

An example of TextBox removal would look like:

Jled @ Analysis disabled m Available tags: 0 o . e
l Run

%’ Manage = Tag listing License Help
rtial tags -« 4 tags Templater
e Search Tags About
|9|8|J"|G|5|4|3|2|l|-|§1|2|3|4|5|6|?|%|

¥ Removing TextBox with citation:

o} Q

Manual input |F|Ie ISQL I H'I_I'F'| O Q
{"citation" null} - [GRABYOUR READER'S ATTENTION WITH A
GREATQUOTE FROM THE DOCUMENT OR
USE THIS SPACETO EMPHASIZE A KEY POINTOO
TO PLACE THIS TEXT BOX ANYWHERE ON THE
PAGE, JUSTDRAG IT.]
— [[citation]:collapse):
O O
O O
1 k
Walid JSOM. Tags found: 1
with the end result being:
Font] Paragraph] Styles
|-2-|-l-|-§-|-1-|-2-|-3-|-4-|-5-|-6-|-?-|-8-|-‘J-|-10-|-11-|-12-|-13-|-14-|-15-|-Q-|-1?-|-18-|

hemoving TextBox with citation:

Merge fields

Word and some other libraries only support merge fields for similar features. Templater will also
recognize tags within merge fields, although it is much easier to define tags without the use of merge
fields.

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

83

[[T11 TEMPLATER

New images

Since duplication of context can cause image duplication, Templater will adjust the document
accordingly. If new images need to be inserted into the document this can be done via Templater
specific data type: Imagelnfo

To ease image usage and support platform with custom/different image libraries, default .NET/Java
image types are by default converted into Imagelnfo type:

e .NET: Image and Icon
e Java: Bufferedlmage and ImagelnputStream

The image files will be included in the ZIP file and referenced from the relevant parts.

Existing images

While passing Imagelnfo to Templater does create a new image at the tag location, not all
configuration options can be accessed this way. If special image style needs to be retained, such as
text wrap, 3D format or any other image specific configuration, this can be implemented by
preparing such existing image in the document and adding tag into its Alternative text property:

Lo oo ol 200 03 4 50 B F o o8 % 1D
Alt Text R
~ How would you describe this object and its
N context to someone who is blind?
N (1-2 sentences recommended)
Image description[[logo]:image]
n

When run with JSON example logo expected result is produced:

84

https://templater.info/documents/working-with-json

[[T11 TEMPLATER

Alt Text vy X

~ How would you describe this object and its
context to someone who is blind?

(1-2 sentences recommended)

Image description

Z O

> O

(K]

5
el

T M

Scalable Vector Graphics images
Microsoft Word 2016 introduced support for SVG standard. This allows for vector instead of raster

N O

images which are much more print friendly. Templater will recognize SVG document as long as:

e expected type is used (XDocument in .NET and Document in Java)
e appropriate node name is used (svg with relevant namespace)

To support old Word versions, raster image can be provided as fallback. This is done by registering
image conversion during library initialization in DocumentFactoryBuilder via svgConverter API.

If image fallback is not registered document will work as expected in new Word versions, but older
versions will display an empty image.

SVG document can also be used on existing images through Alt Text, as long as those placeholder
images are already SVG images.

Document locking
Word has several document locking features. Some of them are only Ul locking which allow for

underlying XML manipulation. Since document is not encrypted in that case, Templater is still able to

modify the document which appears as locked to the user.

85

https://www.w3.org/TR/SVG2/

[[T11 TEMPLATER

View Developer Templater Help Q Tell me what you want to do

Eﬁ Simple Markup ~~ D b
al -

E Show Markup =
P Restrict Hide

EShow Comments Reviewing Pane - 'a Editing Ink =
Comments Tracking M= Changes Compare Protect Ink o~
|-3-|-9-|-1ﬂ-|-11-|-12-|-1]-|-14-|-15-|-a-|-1.?-|-18-|

Restrict Editing ~ *

Your permissions

This document is protected from
unintentional editing.

You may only view this region.

Find Mext Region I Can Edit

Show All Regions I Can Edit
Highlight the regions I can edit

Font color and styles

Templater will use font and color from the tag definition when replacing it with a provided value.
Sometimes color is dynamic and depends on other factors. In that case XML can be injected into the
document which can specify color, background color or any other font attribute during the
replacement.

For this to work Word format for coloring must be used, meaning appropriate XML must be passed
in. By defining appropriate metadata, it is easy to define such common cases. XML which would be

inserted into the document looks like:

<w:tce>
<w:tcPr>
<w:shd w:val="clear" w:color="auto" w:fill="COLOR" />
</w:tcPr>
</w:tc>

Such pattern can be encapsulated via a metadata or low-level API plugin:

private static object ColorConverter(object value, string tag, string[] metadata)
{
if (value is Color == false) return value;
var ¢ = (Color)value;
var fillValue = c.R.ToString("X2") + c.G.ToString("X2") + c.B.ToString("X2");
return XElement.Parse(@"
<w:tc xmlns:w=""http://schemas.openxmlformats.org/wordprocessingml/2006/main
<w:tcPr>
<w:shd w:val=""clear"" w:color=""auto"" w:fill=""" + fillValue + @""" />
</w:tcPr>
</wite>");

}

>

86

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/DataSet%20(.NET)

[[T11 TEMPLATER

Page orientation

In Word page orientation can be changed from page to page (or a single orientation can be used per
document). While there is nothing special in Templater to support such use cases, when pages are
duplicated or removed sometimes special document adjustment is required to avoid empty pages,
which Templater does behind the scenes.

Since page orientation can vary from page to page®!, by combining it with collapse (page removal)
complex layouts can be defined, e.g.:

[[customerMName]]

AN SR AR £ TR T] £ 0L RS T RN S D D]

Bt SRR
B e SN

Object numbering
Various objects have internal ID which must be unique per document. Templater will adjust the
numbering so there are no duplicates in the document.

Multi-columns
Word can have multiple columns per section of the document. This has variety of layout applications.
Templater will cope with various scenarios including duplication of multi-column parts of the

document.

31 A tutorial for page orientation setup can be found here:
https://www.officetooltips.com/word 2016/tips/how to use different page orientations inside one docu
ment.html

87

https://www.officetooltips.com/word_2016/tips/how_to_use_different_page_orientations_inside_one_document.html
https://www.officetooltips.com/word_2016/tips/how_to_use_different_page_orientations_inside_one_document.html

[[T11 TEMPLATER

Common use case is for label printout:

ncuimsv 3
B e Dl

Themes Margins Orientation Size

- [O]Effeds ~

= Breaks ~

=
|
i

£9 Line Mumbers ~

b~ Hyphenation =

[}
=}
LIl | |+ €
=
i

One
== Two
==
IMEES Three
W ===
=S| Let
==
=:| rignt
=:=
EE More Columns..,

Content controls
Content controls come in two basic flavors:

e unbounded content controls
e bounded content controls (aka XML binding)

Unbounded controls behave as any other special control with tags.

Bounded controls reference an embedded XML file which must be changed instead of the actual
Word document. This requires some special handling and is the only exception where low level
Replace can replace “multiple tags” at once - since all tags point to the same underlying value.

Content controls are set-up via appropriate properties window, e.g.:

88

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/XmlBinding

[[T11 TEMPLATER

: Product [[description]]
[[prodjuct]] [[code]] [[quantity]] pcs

Content Control Properties @g

_—

The resulting
General

[[xmil]] Title: |Product [[description]]
Tag: |[[tag]] for product
[] Use a style to format contents

Style: | Default Paragraph Font
]

Locking
[] content control cannot be deleted
[] contents cannot be edited
Plain Text Properties
[allow carriage returns {multiple paragraphs)
[] Remove content control when contents are edited

[Ok, J[Cancel]

Bounded controls support resizing in which case XML elements will also be duplicated.

There is special behavior with content controls on removal, as long as a single content control is
referenced. Instead of looking up for surrounding region of the document, when all tags are located
within the same content control, only the content control will be removed.

This allows for simple way to have surrounding text around the tag which is conditional, eg:

TEL:(can|have [[tagl:collapse] optional parts) | which can be removed from sentence

This behavior can also be used in lists, or tables as long as only content control is affected.

Content controls can be nested, or can contain other tables and/or lists. This makes them easy to
manage alternative for conditional region of the document compared to section/page breaks.

Embedding text documents
Templater v6.1 added support for embedding documents inside Word document, which allows for
various complex scenarios:

e HTML/DOC/RTF display within Word without the need for any kind of HTML -> OOXML
transformations

89

[[T11 TEMPLATER

e Conditional document embedding — when there are lots of smaller documents around, which
need to be assembled into one master document, sometimes its easier to first aggregate all
subdocuments into one master document, than to maintain all subdocuments as part of
master document

e Merging documents — this is a common use case, where multiple documents are embedded
in master document

Since tags work transparently inside embedded documents (even for HTML/XML/TXT extensions)
Templater can process all combined documents through a single/standard interface.

Documents can be embedded via System.lO.Filelnfo (.NET) or java.io.File (Java) types. Tags will not be
available after the import, so document needs to be closed and reopened. All standard operation will
continue to work (duplication of embedded document works fine — and duplicated tags are
immediately available for use). Documents are embedded via Word AltChunk3? feature, which does
not work in some alternative editors (such as LibreOffice).

If one would open docx file and inspect its content it would find files embedded within
/word/embeddings/ folder.

7-Zip

File Edit View Favorites Tools Help

= v o = X i
. Add Extract Test Copy Move Delete Info
Word Title R

DSimple.doodword\embeddingsh,

Mame

This is a Heading B et e
This is a paragraph.
Page Title = -+

[[htm] tag]]
And with a C @ O files///C:/Users/RIKARD~1/Appl
[[another keyword]] . . R

This is a Heading
And <<another>>
«[[MERGEFIELD]]» This 1s a paragraph.
[[SpecialChar]:format(\])] [[html] tag]]
werdkart]

Digital signature

Templater can sign Word document when appropriate certificate is provided paired with a private
key used for signing. Document can only be signed only if it was not already signed (even with just
signature lines). Once signed document will be marked as final (showing the intent that it should not
be further modified) with an attached signature. Signature will be valid as long as certificate is

32 \Word can have problems when there are too many AltChunks defined in the document

90

[[T11 TEMPLATER

recognized by operating system/certificate authority and signed parts of the document have not
been modified. This can be done manually through the Ul:

Mew
. Permissions
Print LEli ;J Anyone can open, copy, and change any part of this document.
Protect
Save & Send
Document =
e Mark as Final
Let readers know the document is final
and make it read-only. ?repare for Sharing
(fi=] Encrypt with Password defore sharing this file, be aware that it contains:
L i‘a? Require a password to open this Document properties, author's name and related dates
document. Headers and footers
Restrict Editing Characters formatted as hidden text
E‘| Control what t'n_!-'pes of changes people Custom XML data
can make to this document, e
Content that cannot be checked for accessibility issues because of the
= Add a Digital Signature current file type

_R Ensure the integrity of the document
by adding an invisible digital signature.

| 7 [

Known issues
If a specific Word feature is not supported, there are few basic categories it falls into:

e feature requires Word rendering engine and thus it’s not supported

o such features include PDF export, TOC renumbering, etc...
e feature is on the roadmap, but it’s not supported yet

o an example would be support for comments or some special chart
o feature is not behaving as expected due to a bug

PDF export
A very common use case is to convert Word document into PDF. Unfortunately, this requires a Word
rendering engine to work correctly.

There are several free and paid libraries which have sufficiently good PDF conversion for simple
documents. But non-trivial documents quickly become non pixel-perfect during the conversion.

Whenever user can convert Word document into PDF this should be preferable. If PDF conversion
needs to be done on the server and there is no access to Microsoft libraries for PDF conversion® the
next best thing is to use proved library such as Aspose. For low-budget solutions the best alternative
to run LibreOffice in headless mode and use it for conversion. For such purpose there is a Dockerfile
paired with Templater server.

33 SharePoint allows for on demand PDF conversion:
https://social.technet.microsoft.com/wiki/contents/articles/15731.sharepoint-2013-new-features-in-word-
automation-services.aspx

91

https://www.aspose.com/
https://github.com/ngs-doo/TemplaterExamples/blob/master/Advanced/TemplaterServer/Dockerfile
https://social.technet.microsoft.com/wiki/contents/articles/15731.sharepoint-2013-new-features-in-word-automation-services.aspx
https://social.technet.microsoft.com/wiki/contents/articles/15731.sharepoint-2013-new-features-in-word-automation-services.aspx

[[T11 TEMPLATER

Table of Contents

As with PDF export correct updating of Table of Contents page numbers requires rendering engine,
as Word does not recalculate them on load (only on print®*). Alternative way to update TOC on load
is to add macro to the document, but requires explicit consent by the user before it can be updated.

Various 3" party solutions which are able to export to PDF can also update Table of Contents.

Embedded Excel document

While chart is also an embedded Excel within the Word, when Excel is embedded into the document,
only the image of the Excel sheet is shown in the document. If underlying Excel is changed, the
picture will not be updated.

34TOC is a field which are updated only before printing

92

[[T11 TEMPLATER

Excel features

Templater has extensive support for many Excel features. Several advanced features are supported
by Templater just updating their underlying data source and Excel refreshing them on load. Really
large Excel files can be created, as long as some best practices are followed.

Complex non-streaming documents

While Excel is sometimes used just as a single sheet with lots of rows displaying some tabular data,
this is often better to do in a plain CSV format which can be opened within Excel. Templater can
create huge CSV documents due to support for streaming, while it will keep Excel in memory during

processing.

Sometimes it’s not clear what benefit does Templater provides to managing Excel, as there are
various libraries for specifying cell value and thus it’s rather easy to build a simple application for
populating Excel with tabular data. But as Templater approach is to bind data with existing
templates, instead of programming layout through code, once non-trivial features gets used and

managed by Templater it quickly becomes obvious:

e rewriting the formula expressions as cells, ranges and table are copied/moved around

e propagating cell and row styles as regions are pushed around

e adjusting the tables, charts, merge cells and named range sizes during various resize
operations

e handling same tag at various places, either as a simple replace or as a part of a collection

e supporting conditional formatting, comments, hyperlinks and various other simple and

complex features
e duplicating sheets containing various tables, graphs, charts and other complex Excel features

Templater can be used to create really large Excel files, although they can require significant amount
of memory®. Since Templater support processing cancellation, processing Excel files can be stopped
in case of some problems, such as lack of memory.

Embedded CSV files within xlsx document can be used to process huge data sets, as PowerQuery (Get
& Transform) can be set-up in a way to load such embedded CSVs and show them in Excel query
tables. Templater will analyze and process such embedded CSV files in /xlI/embeddings/ part of the
xlsx similarly to handling of Word charts through embedded xIsx within docx.

35 Templater will use various optimizations to keep memory down, such as XML streaming for sheets, streaming
of ResultSet and similar types, but it can still take few GB of memory to create xlsx of 100MB

93

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/CsvStreaming
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/DepartmentReport
https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/Formulas
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/DepartmentReport
https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/ExcelLinks
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/PowerQuery

[[T11 TEMPLATER

Resizable behavior

In Excel, where cell is the basic element, everything is considered resizable (unlike in Word where use
of tables and lists is required to consider a region resizable). Still, some elements affect the decisions
Templater will make, such as use of actual tables, named ranges and merge cells.

Cell range

After the initial analysis Templater has information about every tag location. When a resize is called a
matching range is being detected. There are different behaviors depending on where the tags were
located:

all tags within the same sheet - result in range which encapsulates all of them
o other elements such as named ranges and merge cells can influence the initial
minimum spanning range and increase it - this is done so that when resize is
performed the object influence by resize doesn’t get broken
e tags are on different sheets - behavior depends on location of tags and related metadata
o most of the time sheets will be processed separately, resulting in separate resize
operations per sheet
o if sheet or page metadata is used, resizing of relevant sheets (all sheets in between)
will be performed
e tag within the sheet name - instructs that full sheet resize should be performed
o while [[tag]] format will not work without sheet name, both {{tag}} and <<tag>> will

e tagsin embedded CSV file — they have somewhat special rules which are applied only within
a single embedding
o such tags do not respect some rules, such as tag sharing/cloning since they are not
part of any worksheet

Simple range
The simplest range consists from a single tag. While that works as expected, usually range is
contained from multiple tags:

A B
{{col.A}} {{col.B}}

SRS

when paired with matching input:

{
"col": [
{IIAII: IIAllI, IIBll: IIB_lII},
{"A": "A2", "B": "B-2"}
]
}

will result in appropriate cells

94

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/SheetReport

[[T11 TEMPLATER

4 A B
1 |Al B-1
2 |A2 B-2

Matching range within a sheet

Tags can be repeated multiple times and matching range must include all specified tags. This means
that cells can span multiple rows and thus duplication context can be non-trivial. Templater will
match tags even if they are somewhat outside of the “expected” place:

y A B . D E F G

S

Heolal {fcolBy {{col.A}}

2
3 {{col.C}}
4
3
when paired with matching input:
{
"col": [
{IlAlI: |IA1|I’ "B":"B-l", IICII:IIC_lll}’
{IlAll: |IA2|I, IIBII:IIB_ZHI IICII:IIC_ZH},
{IlAll: |IA3|I, IIBII:IIB_3||, IICII:IIC_3|I}
]
}
will result in appropriate cells
| A B C D E F G
1
2 A1 B-1 Al
3 C-1
4 A2 B-2 A2
5 C-2
6 A3 B-3 A3
7 C-3
8
9

Several non-trivial features are visible in the example above:

e Templater can work with context consisting from multiple rows/columns
e cell style will be replicated (colors, font properties, etc...)

e row style will be replicated (height, etc...)

e tags can be repeated within the context

95

[[T11 TEMPLATER

Repeating ranges across sheets
Same tag can be repeated across different sheets. It will behave accordingly to the matching input

type:

e when input is a simple object, same value will be repeated across all sheets
e wheninput is a collection, collection within each sheet will be processed separately

o if page or sheet metadata is used, or a tag is placed within a sheet name, entire sheet will be

duplicated, instead of cell range within a sheet
e if clone metadata is used, all current sheets will be duplicated

Finding best range match
Some Excel features influence the behavior of choosing a repeating range, such as:

e named range
e tables
e merge cells

The reason why such features influence context used for duplication is that Templater will try to
avoid breaking declared group of items. Thus, table is considered a group of items, while just cells
which look like a table are not.

Pushdown

When collection is resized, depending on the chosen context cells bellow the context will be
adjusted. If cells are below the resizing context they will be pushed down. Pushdown will also adjust
the relevant formulas so they are still correct after the pushdown.

A B
Heol.A}r {{col.B}}

Total: [{A+B}H

-ﬁlwl\-'ll-"k

when paired with matching input:

{
"col" [
{"A": 1' ng". 4}’
{"A“: 2’ "g"- 5},
{"A“: 3’ "g"- 6}
]’
"A+B":21
}

will result in appropriate cells

96

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/SpreadsheetGrouping
https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/SheetReport
https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/PushDownExample

A A

1|1 4
2 3
3 (3 o]
4

5 Total: 21

[[T11 TEMPLATER

As shown in the images, row 3 was moved to row 5 as the cells above them pushed them down due

to resize.

Pull-up

If 0 is used for resize instead of cells being pushed down, they will be pulled up if required condition
is met: the affected range includes all cells on specified rows.

Templater will perform pull-up by hiding relevant rows so it appears the rows bellow have been

pulled up.
Relevant input:

{

"zero": [],
"before":"Start",
"after":"End"

}

will transform input cells

A B

Before {{before}}

After

1
2
3 |{{zero.Tag}l}
4
5 {{after}}

Horizontal resize

C

into output with 3™ row
is hidden

A
1 Before
2
4
5 |After
6 |

E C
Start

End

By default, calling resize on a set of tags will result in vertical duplication. Sometimes it’s useful to do
a horizontal duplication (to the right instead of down) with the appropriate push-right instead of

pushdown.

To invoke horizontal resize, internal metadata: horizontal-resize must be placed at one of the tags

being resized:

97

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/DoubleProcessing

[[T11 TEMPLATER

Bl - 'i § i | {{col.AY:horizontal-resize}
A A B C D E F
1 A I{{cnl.,ﬁ.}:hu! Total:
2 B {{col.B}} [{A+BY}
3

when paired with input as in previous example will result in expected output:

-
Al - (£ | A

V| A B C D E F

1 |A _|1 2 3 Total:

2 B 4 5] 21

3

Several relevant things happened during the resize:

e cells were duplicated horizontally instead of vertically

e push to the right instead of push-down was performed on the affected cells right of the
context

e column height was preserved during push-right and column duplication

o cell styles were preserved and formulas would be adjusted

e if a special internal metadata whole-column was used it would instruct Templater that
vertical range used for resizing spans the entire column, instead of just the one matching the
tags. This is useful when there is other information in different cells, as it avoids the use of
helper tags just for defining appropriate region

e when outline levels are used, whole-column metadata is not required, as using outlines will
instruct Templater to treat resize on the whole column

e when resize 0 is called pull to the left will be performed by hiding relevant columns

Outline levels
Outline levels will work as expected in Templater, with also the benefit on influencing resize on the
whole column/row.

Horizontal resize often requires two passes. A template like:

—
ca - fe | =SUM(B4)

- =]
.

4 A B C

1

2 Date Week

3 {idays.date}:horizontal-resize} | {{weekNumber}}
4 [{days.dateTagl} & [0 |
=

98

[[T11 TEMPLATER

When processed with the first pass using:

[
{"weekNumber":47, "days":[
{"date":"2019-11-18", "dateTag":"[[hours.2019-11-18]]"},
{"date":"2019-11-19", "dateTag":"[[hours.2019-11-19]]"},
{"date":"2019-11-20", "dateTag":"[[hours.2019-11-20]]"},
{"date":"2019-11-21", "dateTag":"[[hours.2019-11-21]]"},
{"date":"2019-11-22", "dateTag":"[[hours.2019-11-22]]"}
[}
{"weekNumber":48, "days":[
{"date":"2019-11-25", "dateTag":"[[hours.2019-11-25]]"},
{"date":"2019-11-26", "dateTag":"[[hours.2019-11-26]]"},
{"date":"2019-11-27", "dateTag":"[[hours.2019-11-27]]"},
{"date":"2019-11-28", "dateTag":"[[hours.2019-11-28]]"},
{"date":"2019-11-29", "dateTag":"[[hours.2019-11-29]]"}
1}
]

will result in intermediary step

[Ga - = [=sum(Ba:Fa)

=
4 A B c D E F G M
1
2 Date Date Date Date Date Week Week
3 2019-11-18 2019-11-19 2019-11-20 2019-11-21 2019-11-22 16.2.1500 17.2.1900 |
4 [[hours.2019-11-18]] [[hours.2019-11-19]] [[hours.2019-11-20]] [[hours.2019-11-21]] [[hours.2019-11-22]] <& 0 o ‘
=

with second outline manually collapsed for easier visibility.

After processing such template with appropriate data structure, such as DataTable with code like

using (var doc = factory.Open("stepl.xlsx"))
doc.Process(new { hours = dt });

where data table is prepared to match expected column names (2019-11-XX) data, e.g. :

var dt = new DataTable();

dt.Columns.Add("2019-11-18", typeof(int));
dt.Columns.Add("2019-11-19", typeof(int));
dt.Columns.Add("2019-11-20", typeof(int));
dt.Columns.Add("2019-11-21", typeof(int));
dt.Columns.Add("2019-11-22", typeof(int));
dt.Columns.Add("2019-11-25", typeof(int));
dt.Columns.Add("2019-11-26", typeof(int));
dt.Columns.Add("2019-11-27", typeof(int));
dt.Columns.Add("2019-11-28", typeof(int));
dt.Columns.Add("2019-11-29", typeof(int));

dt.Rows.Add(new object[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 });
dt.Rows.Add(new object[] { 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 });
dt.Rows.Add(new object[] { 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 });
dt.Rows.Add(new object[] { 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 });

will be resized horizontally as expected:

99

[[T11 TEMPLATER

F3 \ =SUM(H4:L4)

H

J

K

L

=]

M

Week

Date

Date

Date

Date

Date

Week

16.2.1500

2019-11-25

2019-11-26

2019-11-27

2019-11-28

2019-11-29

17.2.1500

15

10

40

65

20

S50

115

30

140

165

40

190

Dynamic resize

Dynamic resize is a Templater specific feature which works in both Word and Excel implementations.

Similarly to behavior in Word a tag can be used, which when paired with appropriate input type

(jagged array, DataSet/ResultSet,..) will transform a single cell into NxM cells doing both push to the

right and pushdown in the process:

A A B C
1 |itdryy 1 Right of
2

3 Bellow

when paired with matching input:

{
"dr" |
['A1", 1, "B1", 4],
['A2", 2, "B2", 5],
['A3", 3, "B3", 6]
]
t

will result in appropriate cells

A A B C
1 |Aal .I 1B1

2 A2 2 B2

3 A3 3 B3

4

5 Bellow

F
Right of

Dynamic resize also recognizes whole-column metadata in which case it will duplicate all cells in a

column, not just the ones defined by the minimum spanning region over the relevant tags.

Removing cell range

If Resize(tags, 0) is used on a cell range tags will be replaced with an empty string. Depending on the

range size there will be pull down (by hiding relevant rows) if tag context spans all cells within those

rows; otherwise cells will stay as is (the tags will just be removed).

100

[[T11 TEMPLATER

Tables

Excel can display data set in various ways, either using simple cells range, or using specialized table
feature. There are several additional options available when tables are used (and some restrictions)
which fit naturally onto certain use cases.

Tables have certain unique properties (compared to plain cells).

e each table has a unique name (across all sheets)

e table maintain their size information

e each column inside a table must have unique name

e formula referencing same row in another column is easier to write/understand and doesn’t
incur additional overhead due to relative/absolute reference

e merge cells can’t be used within table

Single row context

Unlike with cell, where context is defined by minimum spanning range, context in a table is always
the full table rows. Most of the time context is just a single row, although tags can be defined outside
of the table in which case table will be duplicated.

Usual Templater features apply:

o styles will be replicated

e tags can be repeated multiple times

e if same tags have different metadata, different values can be shown

e major difference from tables in Word is that in Excel every cell can have its own format for
displaying the value

A simple example would look like:

A fil B

1 P - [- |
2 {{col.Al} ffeol. B}})
3

when paired with matching input:

{
"col" [
{IIAII: |IA1|I’ "B": "B'l"}'
{IIAII: |IA2|I’ "B": "B'Z"}
]
}

will result in resized table

101

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

A B L
A [~ |[] v
B-1
B-2

e

< -

a2 | P2

Multi-row context
Table can also be used in multi-row context, although such usages are not as common. An example
would look like:

Tablel - G I |

{{col.Cit

noLn b

when paired with matching input:

{
"col": [
{"A":1, "B": 4, "C": "X"},
{"A":2,"B":5,"C": "Y"},
{"A":3,"B":6,"C":"2"}
]
}

will result in resized table

Tablel - (‘ Je |

Table resizing behaves almost the same as cell resizing:

New generation software Ltd, Vladimira Varicaka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

102

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

e multi-row context is supported

e tags can be repeated
o cell styles will be replicated
e row styles will be replicated

But there are some differences:

e whole table will be used during resize, while cells will find the minimum spanning context
e table size needs to be adjusted

Setting up tables
While most features which are done within tables can be done with plain cells, use of tables makes
them much easier to use:

e it’'s common to setup cell/column style for formatting purpose
e table style allows for quick/easy visual setup of banded rows/columns
e total row supports various simple formulas for aggregating table data

Tags can be used in table headers, which can also be combined with horizontal-resize (for setting up
dynamic columns).

An example of non-trivial table setup could look like:

_‘ E
1 B2 Total
2 {{items.name}} {fitems.price}} |{{items.quantity}} I'=[Pri-::e] *[Quantity]
3 Total =SUBTOTAL{103;[Tot
1 p—
e e e
5 |
6 | Number | Alignment I Font I Border I Fil I Protection |
L | Category:
& | General Sample
g | Mumber Price
o |
| = | Accounting . . -
" | Date Decimal places: |2 lZI
Time Symbol:
il | Percentage = El
Fraction Megative numbers:
13 | acti
Scentific -1,234,10 USD
| 14 || Text 1.234,10USD
15 | Spedial -1.234,10 USD
e Custom -1.234,10 USD
16 |
17 |
18 |
19 |
20/ |
2l | Currency formats are used for general monetary values. Use Accounting formats to align decdmal
22 | points in a column,
23 |
24 |
25| |
2% |
27
28

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

103

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/ResultSetExample%20(Java)

[[T11 TEMPLATER

when paired with matching input:

{

"column": {"name": "Name"},
"items": [
{"name": "Product A", "price": 45.33, "quantity": 2},
{"name": "Product B", "price": 199.99, "quantity": 1},
{"name": "Product C", "price": 27.25, "quantity": 50}
]
}

will result in resized table (with Show Formulas disabled under Formulas tab):

D2 - fx | =[Price]*[Quantity]
y A B C D E
1 [ENE B3 price B3 Quantity B3 Total - |
2 Product A 45,33 USD 2 90,661
3 Product B 199,99 USD 1 199,99
4 Product C 27,25 USD 50 1362,5
5 Total 3
6

Price column was formatted to show extra USD symbol and 2 decimals, unlike the Total column
which does not have formatting and thus shows numbers in default format.

Header filters were automatically updated to list all values within the table, while various formulas

are showing useful values without extra input data.

For complex reports tables are just the first step, as they are used as data source for various pivots
and charts. To create a pivot data source must be defined, which can be just a table name. Pivots can
be refreshed on load, which is useful to re-populate them with actual data after Templater finishes
with processing. Refresh option can be set on Data tab in PivotTable Options:

104

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/PivotExample

[[T11 TEMPLATER

G —_— - - _— - = |
| PivotTable Options - &lg
Mame: | PivotTable1
ISum of Total I
#VALUE! | Layout & Format I Totals &Filters | Display | Printing | Data |
PivotTable Data
Save source data with file
Enable show details
[V Refresh data when opening the file
Retain items deleted from the data source
Mumber of items to retain per field: | Automatic |Z|
I ER—

Choose fields to add to report:
[{{column.name}}
[ClPrice
[Quantity
Total
Drag fields between areas below:
“ Report Filter column Labels
1| RowLabels T Values

Sumof Total -
|| Defer Layout Update

Removing table content

If Resize(tags, 0) is called on a table, only the content of the table will be cleared up. Table will still
exist with the number of rows as it did in the template. The reason for such behavior is because
unlike in Word, in Excel tables must have at least one row.

The way to completely remove a table is to put a named range around it. This way when named
range is removed, the table will also be removed.

Removing/hiding specific columns
Horizontal resize can be combined with multi-step processing to perform specific column removal
(they will actually be hidden). This requires extra manual code or a custom type processor since it’s

somewhat specific.

By calling multiple resize(column, 0) operations on relevant columns (e.g., they do not exist in input)
and by stripping horizontal-resize metadata from others setup can be configured to process the rest

of columns “normally”.

Template such as:

c2 -

B Size

ontal-resize]|column]

S [[version]:horizontal-resize:whole-column]

C D
B4 version
[[version]:-ho
rizontal-

rizontal-

column]
|

E

Minerals B4 Gas
[[minerals]-ho [[gas]:hori [[range]:hori
zontal-

zontal-

le-column] e-column]

B4 Range B4 Build Time

F €

[[build
resize:whole- resize:who resize:whol time]:horizontal-

resize] i

105

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/DoubleProcessing

[[T11 TEMPLATER

can be processed in first pass to hide columns which are not used and in second pass to populate
rows via e.g.:

[
{"unit": "Battlecruiser", "size": "L", "minerals": 400, "gas": 300, "build time": 160},
{"unit": "Firebat", "size": "S", "minerals": 50, "gas": 25, "build time": 24},
{"unit": "Vulture", "size": "M", "minerals": 75, "gas": 0, "build time": 30}

]

the output will have relevant columns hidden:

A B D E 5

1
2 Battlecruiser L 400 300 160
3 |Firebat 3 50 25 24
4 Wulture M 75] 30,
g

Dynamic resize
Similar to dynamic resize within cells, dynamic resize can be used on a table. There are several
special rules when dealing with Dynamic resize in tables:

e if ResultSet/DataTable/DataReader is used, it will rename the columns to match the labels in
the used data type

e if jagged arrays are used, only data will be populated, while columns will be extended with
generic ColumnX names

e to use jagged arrays and replace column names, special metadata must be used: header

e Column names in a table must be unique. If Templater detects a column name which might
be causing problems (duplicate or empty) it will use generic ColumnX name instead

Tablel - | F= | [[table]:header]
A A B C D E

1 Eﬂlumnlﬂ
2 |[[table]:header]

b |

when paired with matching input:

{
"table": [
["Header A", “Header B”, "Header C", “Header D”],
[llall’ 1' lIBlI, 2],

[“Cz”, 3, "D4", 5]
]
}

will result in appropriate table

106

[[T11 TEMPLATER

Important aspect of Dynamic resize in tables is that it will not stretch tables, unless input object
boundaries go beyond the table (in which case it will stretch the table only to expand the required
extended boundary). This is important when creating charts with Dynamic resize as multiple tags
within the table are required to prepare the table/chart.

Table with two tags:

[Bieom

Hdata2}}

when paired with matching input:

{"ser2": [["Ser X", “Ser Y”, "Ser "]] }

will become
Ser}{ =Ser"|" ﬂSerZ ~
{{data2}}

and when this result is paired with relevant input:

{"data2":[["C1",1,2,3],["C2",4,5,6]]}

It will still maintain table size:

1 2

c1 3
c2 4 5 6,

Duplicating tables
In several scenarios table can be duplicated. When table is duplicated it will get a new name, since
table names must be unique across Excel file.

Named range

Templater will respect named range and will adjust its context detection to include various Excel
features during decision making, such as named range. There are various applications for a named
range such as:

107

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/NamedRange

[[T11 TEMPLATER

e defining outer range used for a resize - instead of letting Templater use minimum range
spanning all tags
o often there are cells outside of tags which ought to be included during the resize.
Probably the easiest way to include them is to declare named range which will
instruct Templater to use it instead of the underlying range (as long as named range
has same tags as the underlying one)
e Templater will avoid breaking cells within certain features (such as tables and named ranges)
o pushdown after the resize will move all cells within the named range, not just the
ones directly below the range being resize
e removing a named range will remove all elements inside
o this way tables and various others elements can be removed

Using named ranges and tables in formula expressions is also more performant and thus
recommended over using ranges.

Named ranges can also be hidden (some features such as filters on cells use hidden named ranges).

Fine tuning resize region
Most common use case for named ranges is to tweak the affected range, without introducing
additional tags just for that purpose (along with :hide metadata since they are not really used).

A simple example of fine tuning would look like:

OuterRange > I | [[Range.Name]]
| A B C (B] E F
1 A B Total
2 |[[Range.Name]]
3 [[Range.ltems.Name]] [[Range.ltems.A] [[Range.ltems.B] [[Range.ltems. Total]]
a4 Total [[Range.Total]]
3

| |

]

which extends the minimum range from A2:E4 to A2:E5 via an OuterRange named range. This
example also uses a nested collection which will stretch the named range when the inner collection is
resized. When paired with input such as:

{
"Range": [

{"Name": "Range 1", "Total": 94, "ltems": [
{"Name": "ltem 1-1", "A": 12, "B": 20, "Total": 32},
{"Name": "lItem 1-2", "A": 51, "B": 11, "Total": 62}

1%

{"Name": "Range 2", "Total": 214, "ltems": [
{"Name": "lItem 2-1", "A": 5, "B": 21, "Total": 26},
{"Name": "Item 2-2", "A": 27, "B": 75, "Total": 102},
{"Name": "ltem 2-3", "A": 44, "B": 42, "Total": 86}

108

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/SpreadsheetGrouping

[[T11 TEMPLATER

will result in output with a new named range:

temp_range 1 - I | Range 2

A A B C (B] E F
1 A B Total
2 Rangel
3 Item 1-1 12 20 32
4 Item 1-2 51 11 il
5 Total a4
i}
7 |Range 2

Item 2-1 5 21 20

Item 2-2 27 75 102
10 Item 2-3 44 42 36
11 Total 214
12

| |

13

Named range must have a unique name within the Excel file and thus Templater will give it name
which starts with temp_range_. While Templater could remove such named ranges, they are left
within the document for cases when documents are processed multiple times.

Since the named range is larger than minimum range, there will be extra row after each resize, as it
was specified by named range.

Both ranges were stretched to accommodate the resized collections within them.

Preventing range splitting

Another common use case for named ranges is to prevent “unexpected” cell pushdown. Often after
the resize a pushdown can break-up totals which were put at the end. There are several ways to
prevent such split:

e use table for totals
e named range around the totals
e merge cells at/above the totals

In all of those cases, the underlying theme is that pushdown will try to push only cells directly bellow
itself. To prevent this named range can be put at the place where we want range to behave as a unit
and thus by giving it a name we will prevent “unexpected” behavior.

109

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

This is quite common in nested ranges which have inner collections and thus partial resize can break
the document layout:

4|l A B C (b] E F]
1 1 A B Total

2 [[Range.Name]]

3 [[Range.ltems.Mame]] [[Range.ltems.A] [[Range.ltems.B] [[Range.ltems.Total]]
a4 Sub-total [[Range.Total]]

5

il

7 Total [[Total]]

 (orewens I e
lﬂ: Edit... Delete m

1 Mame Value Refers To Scope Comment

In the above example there are no named ranges (or tables or merge cells) in the document. Thus
when Range.* is resized, only B2:F4 will be used as a range. This will result in moving of B7:F7, while
A7 will remain at its original position. The resized document when paired with appropriate input:

{
"Range": [
{"Name": "Range 1", "Total": 94, "ltems": [
{"Name": "lItem 1-1", "A": 12, "B": 20, "Total": 32},
{"Name": "Item 1-2", "A": 51, "B": 11, "Total": 62}
12
{"Name": "Range 2", "Total": 214, "lItems": [
{"Name": "Item 2-1", "A": 5, "B": 21, "Total": 26},
{"Name": "Item 2-2", "A": 27, "B": 75, "Total": 102},
{"Name": "Item 2-3", "A": 44, "B": 42, "Total": 86}
1}
1

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

110

"Total": 308

}
will look broken:

[[T11 TEMPLATER

d A B

1

2 Range 1

3 Item 1-1
4 Item 1-2
5

6 Range 2

7 Total Item 2-1

8 Item 2-2
9 Item 2-3
10
11

12

13
14

12
51

27

Sub-total

Sub-total

20
11

21

75
42

Total

32
62

20

102
80
214

308

To fix this output it’s sufficient to define named range as A6:F7 (A6 is used instead of A7 since border

was defined in row 6) which will prevent only subset of region to be pushed down. End document

will look as expected:

111

[[T11 TEMPLATER

TotalRange - 'i Jx |

4 A B C (N} E F

1 A B Total

2 Range 1

3 Item 1-1 12 20 32

4 Item 1-2 3l 11 62

5 Sub-total 94

6 Range 2

7 Item 2-1 5 21 26

g Item 2-2 27 75 102

9 Item 2-3 44 42 86

10 Sub-total 214

11

12

13 (Total 308
|]

14

Removing a named range

Named range will only be removed if all tags are specified during Resize(tags, 0) operation. When
named range is removed pull-up can also be performed when affected range includes all cells in
relevant rows. If pull-up is performed, rows will become hidden.

If previous example was used with a different input:

{
"Range": [],
"Total": 0

}

will have part of rows cleared:

4| A B C D E F

1 | A B Total

L= B B S R R R N

Total 0

]

112

[[T11 TEMPLATER

and with pull-up performed hidden:

4| A B C D E F
A B Total

&

7 Total 0

a

Excel specific features
There are various other Excel features Templater recognizes and can manage. Some of them are
simple, while others can be quite complex.

Formulas
Cell in Excel can display a fixed value, or have a formula which in the end display value based on the
evaluated formula expression. Formula expression can be quite complicated and contain:

e reference to other cells, ranges, tables or named ranges
e fixed values

e mathematical expressions

e call into functions

Excel will put cached value in the same cell where the formula is defined. Some Excel viewers know
how to recalculate/evaluate formulas, but most of them do not and require Excel for evaluating the
formulas again.

Templater also does not evaluate formulas®® but it will adjust them accordingly to the changes being
done in the document. Those changes can be from very simple, to highly complex:

e pushdown will adjust the relevant cells which were pushed
e resize can create new formulas or change the existing ones
e new formulas sometime use new tables and/or new named ranges

An example of formula adjustment would look like:

A A B C D E F

1 Conversion factor: {{exchange.rate}

2

3 B3 Price B3 Price (local) B3 Quantity E3 Total B3 Total (local)

4 {fitems.name}} {{items.price}} "pa*B7 {{items.quantity}} ':[Price]‘[ﬂuantit\r] "ga*g1

5 |Total =SUBTOTAL(103;[Total =SUBTOTAL(105;[Total “.‘
6 | |

7 Conversion factor: {{exchange.rate} ':SUM{TableleotaI]]- ':sum{m].

8

36 This feature might be introduced in some future version

113

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/Formulas

[[T11 TEMPLATER

when paired when relevant info:

{
"exchange": {"rate": 2.7},
"items": [
{"name": "Product A", "price": 45.33, "quantity": 2},
{"name": "Product B", "price": 199.99, "quantity": 1},
{"name": "Product C", "price": 27.25, "quantity": 50}
]
}

will result in formulas which were correctly adjusted:

4 A B C D E F
1 |Conversion factor: 2,7

2

3 B3 price (local) B3 Quantity B3 Total B2 Total (local)

4 |pProduct A 45,33 —pa*R9 2 =[Price]*[Quantity] =E4*B1

5 |ProductB 199,99 "—85+B9 1 =[Price]*[Quantity] =E5*B1

6 |Product C 27,25 =B6*BY 50 =[Price]*[Quantity] =E6*B1

7 |Total =SUBTOTAL({103;[Total =SUBTOTAL(105;[Total (I;
8 | |

9 |Conversion factor: 2,7 =SUM(Table2[Total]) =SUM(F4:F6)

This example has several different cases of formula adjustment:

e new rows copied the formula and pointed to the relevant row®’

e formulas which referenced cell above the table did not modify that reference

e formulas which referenced cell below the table (which got pushed down) had to modify the
reference

o formula which referenced range within a table which stretched due to resize changed their
original range from a single cell to a range stretching over all the new cells

As visible in the example above, some formulas did not change at all; like the [Price]*[Quantity] and
SUM(Table2[Total]); while some had to be changed (at least the visual representation which is saved
into the resulting document). Whenever possible formulas which do not change during Templater
operations are preferable since they will be processed much faster (this is highly noticeable on large
Excel files).

Formula reference syntax
Templater recognizes the special cell reference syntax (relative and absolute) and will adjust the
formulas accordingly:

e D5 - syntax means that cell can move both horizontally and vertically

e SD5 - syntax means that cell can only move vertically, but column is fixed and will not change
e DS5 - syntax means that cell can only move horizontally, but row is fixed and will not change
e SDS5 - syntax means that cell is fixed and will not move (neither horizontally or vertically)

37 Internally Excel uses non-changing representation of such formulas and thus they are not really changed, but
rather just point to a different location

114

[[T11 TEMPLATER

Still, this syntax is only for matching the Excel rules with regards to references. Sometimes Templater
still needs to adjust the formula even when it uses a fixed syntax

Formulas are only allowed to reference elements within a single Excel file. References to another file
are not supported.

New images
If new images need to be inserted into the document this can be done via Templater specific data
type: Imagelnfo

To ease image usage and support platform with custom/different image libraries, default .NET/Java
image types are by default converted into Imagelnfo type:

e .NET: Image and Icon
e Java: Bufferedlmage and ImagelnputStream

The image files will be included in the ZIP file and referenced from the relevant parts.

Existing images

While passing Imagelnfo to Templater does create a new image at the tag location, not all
configuration options can be accessed this way. If special image style needs to be retained, such as
text wrap, 3D format or any other image specific configuration, this can be implemented by
preparing such existing image in the document and adding tag into its Alternative text property:

A B C D E -
1 Alt Text MRS
2 How would you describe this object and its
= context to someone who is blind?
4
: (1-2 sentences recommended)
5] " ;

Description [[Iu:gu:]:lmageﬂ

7
8
9
10
11
1z
13
14
15
16

When run with JSON example logo expected result is produced:

115

https://templater.info/documents/working-with-json

[[T11 TEMPLATER

1 Alt Text v X
2 How would you describe this object and its
3 | context to someone who is blind?

: = (1-2 sentences recommended)

6] Description

? .

B .

9 .

10 |

11

12

13 |

14

15 |

Scalable Vector Graphics images
Microsoft Excel 2016 introduced support for SVG standard. This allows for vector instead of raster
images which are much more print friendly. Templater will recognize SVG document as long as:

o expected type is used (XDocument in .NET and Document in Java)
e appropriate node name is used (svg with relevant namespace)

To support old Excel versions, raster image can be provided as fallback. This is done by registering
image conversion during library initialization in IDocumentFactoryBuilder via svgConverter API.

If image fallback is not registered document will work as expected in new Excel versions, but older

versions will display an empty image.

SVG document can also be used on existing images through Alt Text, as long as those placeholder

images are already SVG images.

Links
Hyperlinks are supported in Excel in the same way as they are supported in Word.

Links have multiple parts, as visible in the example:

116

https://www.w3.org/TR/SVG2/
https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/ExcelLinks

NEW GENERATION SOFTWARE LTD
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia

[T 11 TEMPLATER

https://templater.info

Web Page
Current
Folder

Place in This
Document

Create New
Document

Browsed
Pages

Recent
Files

J AlcernativeProperty
, BoolOoverride
) ChartExample

, ColapseRegion
. DocImport

, BExchangeRates [.MET)
, FoodOrder (LNET)
J Formulas

ExcelContextRules

DS - F« | [llink_name]]
4 A | B | C D
1
2 Favorites
3
A
.5 [[event]] [[date]] [[link name]]
5 '_I—I—I_
7 |[Eeerperioc N ol
& Link to: Text to display: |[[Iink_name]]
9 —
E}g’stileor Look in: | . Intermediate El

HtrmlToExcel

)
i
i
)
[
i
K
[
i
)
I
%

Address: | %Sb%Sblink_url%5d%5d|

E-mail Address

Merged cells

Cell merging has various applications, usually to fine tune the cell display, as cells can have text
wrapped. With text wrapping using multiple columns defines how wide a text can look. Templater
will duplicate, stretch and move merge cells around when document is changed. But it will also
influence regions of document which are pushed down.

Alternative way to void region splitting is to use merge cell instead of named range or a table.
Previous example with merge cells:

4 A B | C D E F G
1 A B Total
2 [[Range.Name]]
3 [[Range.ltems.Mame]][[Range.ltems.A] [[Range.ltems.B] [[Range.ltems.Total]]
a4 Sub-total [[Range.Total]]
)
il
7 [Total l[Total]]
| |
8

New generation software Ltd, Vladimira Varicaka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

117

when resized using same data will look as expected:

[[T11 TEMPLATER

4 A B C D E

1 A B Total

2 Range 1

3 Item 1-1 12 20 32

4 Item 1-2 51 11 62

5 Sub-total 94

6 Range 2

7 Item 2-1 5 21 26

8 Item 2-2 27 75 102

9 Item 2-3 44 42 80

10 Sub-total 214

11

12

13 (Total 308
|]

14

This works because Templater will avoid breaking up merge cells and thus extending the region

which is affected by the pushdown.
Merged cells also after the behavior of formulas (to some extent):

e formulas can stretch due to merge cell stretching
o formulas intersecting merge cells will behave differently that the ones which do not

Similar to tables and named ranges, during resize merge cells can be:

e duplicated
e stretched
e removed

Merge cells requires at least two columns to create a horizontal merge. If merge stretching is
required, the easiest way to implement such a feature is to add additional column and setup
document accordingly, such as in this example:

118

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/Formulas

4 A B C

ASSETS

¢ [[groups.name]|
[lgroups.description]] I[[
| |

groups.items.name]]

7 [[total.name]]
TOTAL ACCOUNT

4 A B C
3
LM ASSETS

¢ Group 1

- Description 1 group 1 index 1

7 Group 2

- Description 2 group 2 index 1

g group 2 index 2

10 Group 3]

. Description 3 group 3 index 1

12 group 3 index 2

3 group 3 index 3

14 total 0

15 total 1 .
T3 TOTAL ACCOUNT l

Cell styles
Excel has extensive support for cell styling:

e alignment

e textdirection

e font/text properties
e colors

e text wrapping

e formatting

e borders

e and few others...

[[T11 TEMPLATER

119

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

Templater will maintain cell styles during duplication, pushdowns and similar changes. This way style
can be easily set-up in Excel, while Templater will maintain those styles across changes.

Conditional formatting

While cell styles allow for static style setup, sometimes cell style depends on the actual cell value. In
those cases it’s useful to apply conditional formatting on the relevant cells so they can have custom
rules based on their values.

A template example with conditional formatting:

A B C D E

Group [[groupl]]

% Closed

[[element.name]] [[element.total] [[element.closed' #VALUE!

J\U‘Ihwl\ll—'k

when paired when relevant data:

[

{"group": "Group 1", "description": "first description",
{"name":"element 1","total":20, "closed": 10},
{"name":"element 2","total":10, "closed": 8},
{"name":"element 3","total":12, "closed": 1}

[}

{"group": "Group 2", "description": "second description",
{"name":"element 2","total":8, "closed": 8},
{"name":"element 5","total":3, "closed": 0}

1}

]

element": [

element": [

will result in two tables with conditional formatting at column E:

A A B C D E

1

2 Group Group 1

3 _
4 element 1 10 - 50,0
5 element 2 10 8
i} element 3 12 1 _
T

8

9 |Group Group 2

10 _
11 element 2 - .
12 element 5 3 0 _
13

14

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

120

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/DepartmentReport

[[T11 TEMPLATER

Comments

Tags can be used even in comments, in which case they will be bound to the cell comment is
referencing. Even when there are no tags in comments, when comments reference a cell which gets
duplicated, a comment will also be duplicated.

A template with comments could look like:

A A B C D E
1 QL A
2 |Group [lgroupl] gf::': about this :
3 Unit A [[description]] :.% Closed
4 [[element.name]] [[eleme]
- L i o
o]
when paired with previous example produces:
4 A | B | C D E
1
2 Group Group 1
3 __
4 element 1 10 -
5 element 2 10 8 -:I
6 element 3 12 1 [_
T
8 -~ | Details about this
3 Group Group 2 l |group
10 second description | ST NN
11 element 2 8 - 1’
12 element 5 T 0 _
13

If Resize(tags, 0) is invoked on the range which has comments, those specific comments will be
removed.

Drawings
Templater will manage drawings on changes to the documents. Drawings come in various types:

e images

e WordArt
e TextBox
o Charts

and several others. On resize, push-down/push-right they will be moved accordingly.

121

[[T11 TEMPLATER

4 AB Gi D E F G H 1 4 AB C D E F G H 1
1 1
N £
: T :
ex|
4 [[expand]:ex [[xxx]] 5 gx::z 2|
2 6 exp3 3
s 1 7 expa 4
7
09 8 exps 5
8 9
9 0.8 10 .
10 07 1
11 06 12 .
12 s E
13 " Wseriesl 14 n
15
1 04 =
03
15 17 3 m
16 02 15
17 0,1 19 2
18 o 20
! 5]
& [fexpand]:expand] 2L
2
2 = 1, | | | |
exp? exp3 expd exps
2

Tags can be used even in TextBox and WordArt, in which case they will be bound to the cell drawing
is referencing. As with comments text can be a combination of tags and normal text. A template with
could look like:

i s e | c b £ F s H i) K L M N o B
; tagin [[text_box]]
Seme text with [[art]]

Form Controls
Excel has support for various controls. They usually refer to cells or cell ranges. Examples of such
controls:

e Checkbox

e Combo Box
e List Box

[]

When Control references a range and this range is resized, Templater will perform required
adjustment so that Control is updated and points to the new range.

In practice this looks like:

122

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER

Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info
A E C D E F
1_
2 O
3 - [[items.name]]

1 Fa
4 L
s| '

S TR
E_ e
7| ||| size | protection | Properties | it Text |i Contral’

8

9— 1 Input range: | S5ES3
10 || gemink |
11 Drop down lines:

12| 1' [7] 3-D shading

when paired when relevant data:

{"items": [
{"name":"Option A"},
{"name":"Option B"},
{"name":"Option C"}

1}

Will adjust control to correct input range

A B | C D E
1_
2
3] A4 Option A
4 | Option A Option B
5 Option B Option C
— Option C
E—
Sheet locking

Similar to locking in Word, a sheet in Excel can be locked. This is a Ul feature which doesn’t really
prevent data manipulation, which means that Templater can still modify the document as usual, but
to the user document appears locked (or some parts of it).

It's available through Review -> Protect Sheet menu:

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

123

[[T11 TEMPLATER

outxlsx - Micro:
Home Insert Page Layout Formulas WView Developer Load Test Team

Q __J U _,f_J_JShow,."HideCUmment L—E‘] @ Q

4% Show All Comments
Protect Protect Share
Sheet Workbook = Workbook

MNew Delete Previous Mext
Comment 3 Show Ink

Protect Sheet

Protect worksheet and contents of locked cells

Password to unprotect sheet:

A

2

3 |[Account DEP-01

4 Balance 125
5

&

7

Allow all users of this worksheet to:

.] -
Product Deposit Z Select unlocked cells i
Created on: 2017-04-02 [Format cells
|| Format columns =
|| Format rows
8 Transactions S nsert cohms
|| Insert rows
B0 Blamount B3 [tnsert hyperirks
10 00001 50 2017-04-0f | || D=Iete columns
v || Delete rows -
11 (00002 25 2017-04-0

12 "oooos 50 2017-05-0
13

Sheet duplication/removal
Templater can duplicate entire sheet ranges in certain conditions:

e tagis usedin sheet name
e tag has relevant metadata: page or sheet

All objects within the sheet will be duplicated so it’s possible to define tables, pivots, charts and
other advanced Excel objects and have them duplicated with relevant sheets.

Excel has certain restrictions on sheet names, so metadata can’t be used and result can’t be longer
than 30 characters.

A B 1S D E F G H I J K L M N Q P
[[department.name]]
1
2 Head [[department. head]]
3
4, [[department.team.name]] Lead: [[department.team.lead]]
5 :Projed Epic Duration Task Estimate Spent Epic health Project health
6 [[department.team.project [[department.team.projet 0,0 [[departmenttimated]] isk.spent]] #DIV/0! #DIV/0!
7 :Tntal mandays 0,00 md
8 —
| Data | {{department.code}} | Summary | 1

When resize 0 is used to remove the sheet, Templater will use very hidden attribute on the sheet to
leave it in xlsx, but hide it from list of sheets and disallow listing of those sheets in Unhide popup.

Sheet can be reenabled via VBA properties:

124

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/DepartmentReport

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

File Home Insert Page Layout Formulas Data Review View Help
F\ *3 Record Macro £ Microsoft Visual Basic for EEicaﬁuns - @

=L T : :
. ﬁu_ﬁ Relative References © File Edit View Insert Format Debug BRun Tools Ade
Visual Macros

Basic ! Macro Security ~ | ¥ G 3| Bl (¥4 @]
Code Project - VBAProject x|

=&} VBAProject (departments-1.xlsx)

A A B =142 Microsoft Excel Objects
1 i-BH] Sheetl (Data)
T 1 Sheet2 ({{department.code}})
= 1 Sheet3 (Summary)
3
4
5 Sheet2 Worksheet
6 | Alphabetic | Categorized |
7| EnableCutlining False
g Row Labels EnablePivotTable False
| EnableSelection 0 - xlMoRestrictions
9 Z[[summary.department
— I ry-cepa MName {{department,code}}
1[}_ [[summary.team]] ScrollArea
= Cxamcl Lokt StandardWidth 8,43
| Data Summary Visible 2 - wlSheetVer
o -1 - xlsheetVisible

0 - ¥lSheetHidden

Headers and footers
Tags can be used in headers and footers, although only a subset of Excel features is available at those
places. Headers can be defined in Page layout mode, e.g.:

B S R i e =
Gridlines Headings = 1 Hide ad] Synchron

+
Mormal | Page |Page Break | Custom Full Zoom 100%: Zoom to Mew Arrange Freeze _)
Layout | Preview Views Screen || | Message Bar Selection || Window ANl Panes~ L Unhide | 4 Reset Wil

R e T T
D
[[Orginfo.Name]]
Report Date: [[DateAsOf]]
[[Title]]
Male Female Total
[[Header.Name]]
[[Header.ltems.Name]] [[Header.ltems.Mal [[Header.ltems.Fer [[Header.ltems.Total]]
Total [[Header.Total]]

New generation software Ltd, Vladimira Varicaka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

125

[[T11 TEMPLATER

Power Query / Get & Transform

There is basic support for Power Query, as in when underlying data source uses tags, they need a
special treatment. This allows usage of complex Power Query use cases. More complicated use case
such as use of embedded CSV file within XLSX file which gets processed by Templater and then
consumed by Power Query allows for sending complex reports over the network as a single file.

Templater will analyze and process tags in embedded CSV files®® similarly as it processes embedded
xlsx files within docx (for charts). This allows for displaying huge amount of data, as CSV is much
smaller and faster to process. Embedding CSV file within xlsx is somewhat custom process, consisting
from:

e setting up CSV dependencies so that Excel does not remove embedded CSV file on next save
e putting CSV file within xIsx zip so that it can be recognized/processed during processing
e setting up somewhat complicated process of unzipping xIsx and passing embedded CSV into
PowerQuery transformations
o there are various restrictions with common unzipping, as streaming zip (natively
produced by Java version) is much harder to support
o since CSV is embedded within the same file, some tricks must be used, such as
having formulas pointing to the file, building table from those parameters and using
them in expressions to locate the expected file

Excel setup can look like:

| = - = T— — PowerQueryxlsx - Microsoft Excel ble Tools | | ==

Home | Insert | Page Layor | Formulas | Data | Review | View | Developer | Templater | Foxit Read | Power Qui | Load Test | Team || Query | Design | & e =

[2 DD * [’::’ g:"ﬁ Ef Duplicate

lj Reference
Edit Properties Delete | Refresh Load

b = | ImportCS)

Home Transform Add Column View

Query & To I8 -
Edit Load R i : A " 2
i 0a euse f)’_j [ﬁa D:Propertles u 4 :l 1h % Data Type: D
Jx | [[csv.quarter]] = = [= Advanced Editor il [use First
Close & Refresh Manage Reduce Split Group 1
Load = Preview = [F] Manage - Columns = Rows Column~ By E¥] Replace’
Close Query Sort Transform
> fx = Table.TransformColumnTypes (Headers,{ W (
.ﬁzj FA. 5 pate - | AB. Week ~| AB. Month - | AB. Quarter -] 123 Yei
g 1 Error [[esw.week]] [[esv.month]] [[csv.quarter]] Error
with CSV file looking like:
5 i . Ch\Projects\TemplaterExamples\Advanced\PowerQuen/ternplate\ PowerQuery xlsdud\ embeddings',
MNarme Size Packed Size Modified Created
L) data.csv 492 227 1980-01-01 00:00

File Edit Format View Help

pate; week;Month;Quarter; Year;Payment date;original principal;Person id;0Operato -
[[csv.date]]; [[csv.week]]; [[csv.month]]; [[csv.quarter]]; [[csv.year]]; [[csv.pay

38 There are some minor differences to regular xIsx processing within docx. This feature is available since v4.4

126

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/PowerQuery

[[T11 TEMPLATER

It is recommended to turn on Refresh on load feature accessible through the connection properties:

owerQueryJ(I's?!'ilﬁcrosoﬂ Exccel

Home | Insert | Page Layor | Formulas || Data

Aeress @ I_@Con
Jeb 1= & prop

Connection name: | Query - ImportCsy

Rflrlejh =T Description: Connection to the 'ImportCSY' query in the workbook,
Connectio
Usage | Definition
—— Refresh control
Last Refreshed:

Query - ImportCsy Connection to the
Query - LoadParam Connection to the ‘L
Query - RawData Connection to the
Query - UnzipFile Connection to the |

Enable background refresh
Refresh every |60 | minutes
Refresh data when opening the file

[] Remove data from the external data range before saving the
workbook

< L

While such usage is not as easy to manage as regular Templater tags, due to requirement for column
transformation, when appropriate, the cost of such manual transformation should be minimal
compared to the value extracted by the report.

Pivots and charts

Advanced Excel features usually consume data source(s) (specific range, table or a whole sheet) to
present data in various advanced analytics friendly way. As with many other features, Templater can
duplicate such pivots and charts which allows for very complex reports.

Most charts (column, line, pie, bar, area...) work the same way and are supported by Templater.

There are usually multiple data source definitions for each specific feature, e.g.:

127

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/SheetReport

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER

Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info
4 C D E F | G
14
15
16
17 lson Rewvenj.Met full Revenj.Net lackson DSLclient Java full DSLclient Java Protobuf.NET
18 minimal minimal
—
20
E Chart data range: | ="{{name}}' 1 SBS37: 5K539
22
: =)
= Switch Row/Column
24 \ ;—‘ [] \—l r
25 Legend Entries {Series) Horizontal (Category) Axis Labels
26 | add || oFest || Xeemove | + 8] |57 Ed
E Serialization MNewtonsoft, Json
E Deserialization Revenj.Met full B
ﬂ Revenj.Met minimal
30
H Jackson
— D5L dient Java full
32
33 ok || cancel

34 5n Revenj.Net ful Bbuf MET

- | Revenj.Met minimal B3 sackson B3 DsL client Java
38 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

When charts and pivots are duplicated, data ranges will be adjusted accordingly; even if the sheet
name changes (as in the above example).

Charts with dynamic number of series
Special behavior is required for charts where number of series is not known upfront. Templater
supports both horizontal-resize and Dynamic resize to implement such behavior.

Example template:

New generation software Ltd, Vladimira Varicaka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

128

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

{{ser2}}

Chart data range: |=5heet2!$BB:$C$4

g—‘ [Switch Rowy/Calumn] \—@

Legend Entries (Series) Horizontal (Category] Axis Labels

[s | Goon | Xamon [][] [G |

f{ser2}} Hdata2y

[Hidden and Empty Cells

paired with relevant input:

{
"ser2": [["Ser X", "Ser Y", "Ser Z"]],
"data2":[["C1",1,2,3],["C2",4,5,6]]
}

will result in expected output:

1

2 3
1C2 4 5 6,

Chart Title

Chart data range: ‘=Sheet2!5353!5£5‘5

=

Legend Entries (Series) Horizontal (Category) Axis Labels
[D | Gen | xamoe []7] [Gem |

SerX c1

Ser¥ c2

SerZ

Print Area

Templater supports hidden named ranges and will adjust them on document manipulation. This
means print area should be correct after processing by Templater.

Formula conversion
Tags can’t be used within formulas. There is a special way to convert cell values into formulas at the
end of processing. If a cell starts with [[equals]] tag it will be converted into formula representation.

New generation software Ltd, Vladimira Varicaka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

129

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/ToFormulaConversion

[[T11 TEMPLATER

Font color and rich text

Similar to Word XML can be used to inject values into xlsx directly. But unlike in Word, only subset of
features can be specified this way. Prior to v6 background could only be set via Conditional
formatting. With v7 internal Excel attributes can be provided via XML value:

e cell and row styles can be copied from another cell/row by using appropriate attributes
o templater-cell-style=CELL
o templater-row-style=ROW
e other row attributes can be specified
o templater-row-height
templater-row-custom-height
templater-row-collapsed
templater-row-custom-format
templater-row-hidden
templater-row-thick-bottom
templater-row-thick-top

O O O O O

In practice this means if there is a sheet with several cells with predefined styles, e.g.

F3 v § [[tag]]

[itagn |

o B owor

By passing in relevant XML for tag:

var xml = XElement.Parse("<t templater-cell-style=\"A2\"
xmlns=\"http://schemas.openxmlformats.org/spreadsheetml/2006/main\">In
color!</t>");

templater.Replace(“tag”, xml);

After processing Sheet will look like

|In color! |
| |

RO A R R R (%

Simple rich text can be entered as XML as long as the underlying Excel OOXML format is understood.

130

[[T11 TEMPLATER

Cell merging via metadata
Internal metadata merge-nulls works in Excel also®.

When simple template such as

[[table]:merge-nulls]

Is populated with two-dimensional array

var table = new object[,]

{
{"Loan Name", "Interest", null},
{null, 100, null},
{"Loan 2", null, null},
{"", "Interestl", "Interest2"},
{100, null, 200},
{"Loan 4", 200, 300}

s

It will result in merged cells

Loan Name Interest !
100
Loan 2
Interestl Interest2
100 200
Loan 4 200 300

Digital signature
For the purpose of providing authenticity of the data in the document, Templater supports document
signing which marks spreadsheet as final and prevents changes to signed parts of the spreadsheet.

Main downside of signing Excel files is that Templater leaves formula recalculation to Excel, which
invalidates document. For this reason, signing document will also change formula calculation mode
to manual which will result in cell values for formulas empty.

Signing can be done manually via Excel interface:

39 span-nulls is not currently supported in Excel

131

[[T11 TEMPLATER

i...'?r Open
J Close
‘J'D‘_l : iperties
._ﬁl? o See additional information about what you are signing...
Protect
Recent Workbook = You are about to add a digital signature to this document. This signature will not be
“ M| wvisible within the content of this document.
Mew Purpose for signing this document: Egories
5 A lated Dates
L L22 | | Signing as: Rikard Pavelic & 110 dified
Check f - -
Save & Send 1 g | |
soues T .
: Printed
Sign l [Cancel
Help | |

SRelated People

Known issues
If a specific Excel feature is not supported, there are few basic categories it falls into:

e feature requires Excel rendering engine and thus it’s not supported
o such features include PDF export, etc...

e feature is on the roadmap, but it’s not supported yet

e feature is not behaving as expected due to a bug

PDF export
A common use case is to convert Excel document into PDF. Unfortunately, this requires an Excel
rendering engine to work correctly.

There are several free and paid libraries which have sufficiently good PDF conversion for simple
documents. But non-trivial documents quickly become non pixel-perfect during the conversion.

Whenever user can convert Excel document into PDF this should be preferable. Even running
LibreOffice in headless mode supports only limited feature set of Excel. For simple documents there
is a Dockerfile paired with Templater server which can be used to ease the PDF conversion via
LibreOffice.

Power Query cloning
Templater currently does not support cloning of sheets with Power Query. This restriction might be
lifted in some future version.

Formula values

Templater will remove cached values from formula cells. Also, it will not evaluate formulas at the end
of processing. This means that when a document is opened it must be displayed via an application
which knows how to evaluate the formulas on load (such as Excel). When spreadsheets are signed,
formula recalculation is disabled to prevent signature invalidation, which causes formula values not
to be recalculated.

132

https://github.com/ngs-doo/TemplaterExamples/blob/master/Advanced/TemplaterServer/Dockerfile

[[T11 TEMPLATER

PowerPoint features

Templater has high coverage of various PowerPoint features, although many of them use embedded
Excel files within the pptx file. Various features are supported out-of-the box without any special
code, while some require special handling and will be introduced over time.

Ready-to-use presentations

Prior to v4.0 Templater did not support PowerPoint format due to lack of useful use cases. But due to
deeper integration of Templater into various applications it became obvious that creating
presentations from various in-depth analyses has become a common use case. Therefore, most of
Templater features work also on PowerPoint format, although common use cases consist from only a
few features:

e resizing/populating table to show raw numbers
e populating charts to display numbers in visually informative ways

While both of those can be done in Word or Excel, by automating export into PowerPoint manual
step of copy-pasting numbers is avoided.

Resizable behavior

Processing PowerPoint has its own special rules for detecting how resize behaves. Unlike Word which
has a single main document and Excel where the basic element is a cell even if there can be many
sheets, in PowerPoint the basic element is a slide. To understand resizing behavior of Templater few
rules have to be understood. When Resize(tags, count) is called Templater will

e find the best matching region on the slide or across the slides which encapsulates all
specified tags
o regions will be limited to the rows in a table (matched for starting and ending row)
= table region can span multiple rows
o relevant list levels will be matched
= list levels can match the hierarchical structure of the model
o when tags are neither in table, embedded Excel (chart) or a list, whole slide will be
used
e if all tags are inside tables/lists/chart, instead of duplicating the slides, tables, lists and/or
charts will be resized instead
o this means when a same collection is repeated both in a table and in a chart, that
those tables and charts will get new rows instead of slides being duplicated
e when count = 0 indicating removal of the content part of the presentation, slides will be
removed
o allslides can be removed from the presentation
o this is useful for conditionally presenting only a relevant part of the presentation

133

[[T11 TEMPLATER

Lists

Not every element in a slide is considered resizable (like in Excel where each cell can be considered in
such a way). Unless text is marked as list within the slide of the presentation the whole slide will be
used as context instead of only that list element.

Like in the Word lists can be:

e bullets
e numbered
e multi-level

List can be located even in notes, but they must have special list marker attached to them. Marker is
visible in the menu when caret is located on the relevant element:

Slide Show Review View Dreveloper Format
s=|[1= ||§} Text Direction ~
=(|1=-

=] Align Text ~

Sj Convert to SmartArt -
[

) [lbullet]]

Duplicating list elements will retain all their properties (font style, nesting level, colors, etc...)
Matching above template with appropriate input:

[
{"bullet": "Point 1"},
{"bullet": "Point 2"},
{"bullet": "Point 3"}

]

will result in multiple list elements:

Slide title

» Point 1
» Point 2
» Point 3

134

[[T11 TEMPLATER

Nesting
Common use case for lists is pairing it with deep nesting or even with recursive structures.

When specialized data structure is used, such as:

public class Nest

{

public String value;
public Nest[] nested;

it is rather easy to pair it with nested list by predefining maximum nesting level, e.g.:

List nesting

» [[valuel]]
> [[nested.valuell

* [[nested.nested.valuel]
- [[nested.nested.nested.valuel]

Based on the input, resulting list will match the nesting levels and values, e.g. for input as:

[

{"value":"Level A-1", "nested":[
{"value":"Level A-2a", "nested":[] },
{"value":"Level A-2b", "nested":[

{"value":"Level A-3", "nested":[
{"value":"Level A-4a", "nested":[]},
{"value":"Level A-4b", "nested":[]}

I}

I}

[}

{"value":"Level B-1", "nested":[
{"value":"Level B-2a", "nested":[] },
{"value":"Level B-2b", "nested":[] }

1}

]

a matching list will be created:

135

[[T11 TEMPLATER

List nesting

» Level A-1
- Level A-2a
- Level A-2b
+ Level A-3
- Level A-4a
- Level A-4b
» Level B-1

- Level B-2a
- Level B-2b

Since style is defined on the list, while Templater only binds the data with the list, complex list
representations can be easily constructed.

Tables
While tables in PowerPoint are not as feature rich as the ones in Word, they are still quite useful and

used often. Table can have various options attached to it, such as:

e styles

e spacing

e alignments

e borders

o cell merging
e textdirection

which allows easy setup of complex layout.

Resizing a table is quite intuitive in Templater. When a table like:

Table

[[collection.columnAll [[collection.columnB]]

is matched with an appropriate input, e.g.:

{

"collection": [

136

https://github.com/ngs-doo/TemplaterExamples/tree/master/Beginner/PresentationTables

[[T11 TEMPLATER

{"columnA": "value A1", "columnB": "value B1"},
{"columnA": "value A2", "columnB": "value B2"}
]
}

The result will look as expected:

Table

value Al value B1

value A2 value B2

A really important aspect of such transformation is:

e itisimplied by the document structure
e there are no loop or start/end constructs in the document
e it matches against the input “intuitively” by using dot (.) for navigation

Multi-row context
Templater supports context use over multiple rows, such as:

Two-row context

[[items.name]] [[items.price]-format(N2)]
[litems.description]]

when matched with an appropriate input, e.g.:

{
"items": [
{"name": "Product A", "price": 99.99,"description":"Nice useful tool"},
{"name": "Product B", "price": 120,"description":"Spans\nmultiple\nrows"}

]
}

Produces an expected table which looks like:

137

[[T11 TEMPLATER

Two-row context

Product A 99,99
Nice useful tool
Product B 120,00

Spans
multiple
rows

and has several non-trivial features:

P wnNPR

context is no longer a single row, but two rows, since tags were defined across several rows
simple number formatting can be used to tweak the output into expected format

bolding, italics and other text features were preserved

newlines in text input resulted in newlines in cell values

Dynamic resize
A special feature of Templater is processing specific input types (two dimensional collections and

DataReader/ResultSet) in a specialized way.

A basic use case for Dynamic resize would be to transform table template into a final output, e.g.:

Dynamicresize

when matched with an appropriate input, e.g.:

{

"table": [
['A", "B", "C"],
["A-1", "B-1", "C-1"],
["A-2", "B-2", "C-2"],
["A-3", "B-3", "C-3"]

]
}

it will

be transformed into a table with 3 equal columns and 4 rows:

138

[[T11 TEMPLATER

Dynamic resize
A 8 cC |

A-1 B-1 C-1
A-2 B-2 Cc-2
A-3 B-3 Cc-3

While this is useful for some scenarios, usually explicitly defined table templates are used since they
allow for more fine-grained tuning.

Cell merging
While cells can be merged in the template, there are use cases when they need to be merged during
table generation/population. For this reason, there are two built-in metadata plugins:

e merge-nulls - invokes horizontal cell merging when cell value is null
e span-nulls - invokes vertical cell merging when cell value is null

Cell merging works both in Dynamic resize and standard table resize. Table such as:

Cell merging

[[nulls.al:merge—nulls] [[nulls.b]l:merge-nulls] [[nulls.cl:merge-nulls]

when paired with input such as:

{

"nulls": [
{"a"™:"A1", "b":null, "c":null},
{"a"™:"A2", "b":"B2", "c":null},
{"a":null, "b":null, "c":null},
{"a":"A4", "b":null, "c":"C4"}
]
}

will result in table with merged cells:

139

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

Cell merging

Column A Column B Column C
Al

A2 B2

A4 Cc4

Existing merge cells
If there are existing merge cells in the table, Templater has specialized behavior for dealing with
them:

e if tag range does not touch start of a merge cell or goes beyond end of merge cells, merge
cell will be stretched

e otherwise context will be expanded to include merge cell(s)

e if tag is contained within the merge cell, context will include merge cells in minimum
spanning range

Stretching merge cells in a table looking like:

[[ext]] [[num]]

When matched with an appropriate input, e.g.:
[

{ |Inumll: 1, "tXt“:"A“ }'

{ |Inumll: 2, Iltxtll: IlBlI }

]

Will result in table with merge cell stretched:

1
2

To change from stretching to duplication in this use case, additional tag can be added to first row,
e.g. [[num]:hide] which will be removed after processing, but will influence the behavior.

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

140

[[T11 TEMPLATER

Removing a table

When Resize(tags, 0) is called on a table, relevant rows will be removed. Sometimes this means that
entire table will be removed, but often for the table with headers which don’t have any tags the
header remains at the end of the resizing. In the case when there is a separate header without tags a
common workaround is to add special tag on the header with collapse and hide metadata:

Table

[[collection.columnAll [[collection.columnBl]

This way when collection is empty a separate resize 0 will be called just for the header row. When
collection is not empty hide metadata will take care of not showing any text in place of the tag.

To remove the whole slide, instead of just table, this helper collapse tag can be added to slide title in
which case Templater will conclude that resize(“collection”, 0) should result in removal of entire slide
along with all tags within the slide.

Charts
Charts are represented by embedding Excel xIsx inside PowerPoint zip pptx. Depending on the chart
type there is also some aggregation of values within the slide XML.

Charts are also considered resizable elements, as the underlying data source is a resizable Excel
range.

Chart template is defined within Excel by adjusting original template and replacing values with tags,
which results in a bit unfriendly chart template:

Design Animations Slide Show Review View Developer Design Layout Format

?

mn Data Data Data

O 9 9

Distribution

m [[chart.value]]

141

[[T11 TEMPLATER

based from the Excel template:

Al > (3 I
A B

| .|Di5tributi0r1 J

[[chart.valut [[chart.distribution]

'i-\-'ll'\-ill—"hL

But once the underlying Excel is populated with data, e.g.:

{
"chart": [
{"value":"Value A","distribution":11.2},
{"value":"Value B","distribution":20.5},
{"value":"Value C","distribution":15.7}
]
}

the chart will be updated accordingly:

Al - (- £ |
4 A B
1 [lpistribution
m Value A 2 Walue A 11,2
mValue B 3 ValueB 20,5
WYalue® | 4 \ValueC 15,7
5

Tags defined within the Excel are visible in the Tags property on the ITemplater interface of the
PowerPoint document. This makes them transparent to the application/processing. This means there
is no need to unzip the pptx file, process the embedded xlIsx files, but rather Templater does that
behind the scenes.

There are various charts in PowerPoint, such as pie charts, graphs and various others. They should all
work seamlessly through Templater. Same collection can be used in multiple charts/tables which
allows for different representation of the same data.

142

https://github.com/ngs-doo/TemplaterExamples/tree/master/Intermediate/SharedCharts

[[T11 TEMPLATER

PowerPoint specific features

Slides

Resize behavior of slides is slightly different from the single Word document and from Excel sheets.
When a tag is detected in a slide, but not inside list/table or chart the whole slide duplication will be
invoked on resize. Resize(tags in a slide, 0) will remove the relevant slide(s). This is similar to the
sheet duplication, but will happen more often/easily. Some common use cases for slide
duplication/removal are:

e conditional adjustment of presentation
o by having many possible slide templates and removing non-relevant ones
presentation can be adjusted to fit a specific role from a more general template

e repeating of same visualization for different data sources
o agenericslide can be used to display graph of a relevant specific information; same
slide template can be used to display different information in a same way

Language desktop usage

Desktop
100
90
80
70
60
50
40
30
10
0 . . T
CH Java C++ Python Javascript

Notes

Each slide can have notes attached to it. Notes are used to provide contextual information for a slide
and have much reduced feature set. If tag is detected within a list inside notes, resizing will only
affect the specific list, while otherwise resize will affect the entire slide.

An example of a tag in a list inside notes looks like:

143

[[T11 TEMPLATER

[[title]]

[[subtitle]]

There are many programming languages.
Currently top languages are:

+[[top.language]]

Images
Unlike in Word and Excel, Templater only supports replacing predefined images in PowerPoint. This is
done the same way via Templater specific data type: Imagelnfo

To ease image usage and support platform with custom/different image libraries, default .NET/Java
image types are by default converted into Imagelnfo type:

e .NET: Image and Icon
e Java: Bufferedlmage and ImagelnputStream

The image files will be replaced in the ZIP file and referenced from the relevant parts.

This way image template can be preconfigured in advance. Special image style, such as text wrap, 3D
format or any other image specific configuration, should be set-up, while Templater will recognize
this image as long as it detected tag in Alternative text property:

144

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

Alt Text B

How would you describe this object and its
context to someone who is blind?

? (1-2 sentences recommended)

Image description[[logolimage]

Templater image

When run with JSON example logo expected result is produced:

Alt Text Vo8

How would you describe this object and its
context to someone who is blind?

? (1-2 sentences recommended)

5
Links

Templater analyzes hyperlinks and thus they work as expected. Hyperlink can have multiple tags or
tag can be combined with static description. Address is url encoded which means that [[specific_url]]
is converted into %5b%5bspecific_url%5d%5d when hyperlink is created, e.g.:

Templater image

New generation software Ltd, Vladimira Varicaka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

145

https://templater.info/documents/working-with-json

NEW GENERATION SOFTWARE LTD
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia

Text to display: |Link: [flink_description]]

Look in:

BJEY

| .. output

Existing File or

Web Page
Current
Folder

Place in This
Document Browsed

Pages

Create New
Document

Recent
Files

Address: %5b %6 5blink _url%e5d %:5d

Remove Link

E-mail Address

J |

Cancel]

[[T11 TEMPLATER

https://templater.info

————————— O 4

Special data types can also be used to create simple links (just a link, no custom description) when

URI/URL is used as datatype.

Word ART

Tags can also be used in Word ART and other similar features.

Slide Show Review View Developer

{4 Shape Fill ~ Applies to Selected Text

AN
A /
A A A
A A A

Applies to All Text in the Shape

A £ A

"

= L& Shape Outline ~

/7| < shape Effects -

A5 | Clear Wordart

Text Box
Text box behave like any other region within a slide.

A
A A
HI.-!H = =

A
A A

A AAAA.

a [Front =~ |= Align
ack E Group ~

Sl Rotate -

Pane

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria

d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

146

NEW GENERATION SOFTWARE LTD [[T]] TEMPLATER

Vladimira Vari¢aka 3, 10010 Zagreb, Croatia https://templater.info

Developer

Header Wordart Date Slide Symbol Object
& Footer = & Time Mumber

Insert a text box into the
document, or add text to the
selected shape.

Header/footer

Slide numbers can be easily injected via Header & Footer functionality. If tags are used in footer they
will be repeated automatically on all slides:

Dl QA9 R0 9w |69

SmartArt Chart Hyperlink Action Text Header Wordart Date Slide Symbol Object Movie Sound
Box & Footer = & Time Number = =

Header and Footer

Slide | Notes and Handouts

Indude on slide
Date and time
(@ Update automatically
[11.5.2019. =]
Language: Calendar bype:
| Croatian (Croatia) |Z|| | Western
Fixed
[11.9.2019.
Slide number
Footer
| [fFooter]]

Digital signature

When creating presentations, it is useful to be able to trust numbers in the document. For this
purpose, presentation can be signed to prove origination of the document.

0 MARKED AS FINAL An author has marked this presentation as final to discourage editing. Edit Anyway x

0 SIGNATURES This document contains valid signatures. X

1. Signatures v
Valid signatures:

2 = templater.info 28.2.2021,

Known issues

PowerPoint is the latest addition to the Templater as of v4.0 so many features are not yet supported.
Most of them will be supported over time, unless they require rendering engine.

New generation software Ltd, Vladimira Vari¢aka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria
d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

147

[[T11 TEMPLATER

PDF export
A very common use case is to convert PowerPoint document into PDF. Unfortunately, this requires a
PowerPoint rendering engine to work correctly.

There are several free and paid libraries which have sufficiently good PDF conversion such as Aspose.
But non-trivial documents quickly become non pixel-perfect during the conversion.

148

https://products.aspose.com/slides/family

[[T11 TEMPLATER

CSV /text features

Templater APl spans various document formats. While there are various solutions to build
text/html/CSV plain text output, there are some advantages if Templater is used for such purpose:

e (CSV/text can be user configured (in the same way as Word/Excel/PowerPoint files can)
e same processing can be done on different formats (data structures can be reused to create
export for xlsx, docx, pptx or csv without any code changes)
e Templater is heavily optimized and can output text files at high speed
e streaming can be utilized to create huge documents
o while streaming can be utilized on xlsx (and docx/pptx), not all streaming features
can be used as document is optimized for keeping all data structures in memory
before the end of processing
e (CSV/text will not add watermark message into the document
o free version can be used without buying a license
e (CSV can be used as data source for Power Query embedded within the same xlsx file

Simple documents
There are various use cases for simple text format usage:

e (CSV (comma separated values) export
o similar to xIsx (can be opened by Excel)
e fixed-width text format export
o various legacy formats are exchanged between system as a specialized fixed-with
format
e simple html/email messages
o signup email and similar simple messages
e sms/chat messages
o notification messages (upcoming events, late payments, ...)

Templater is able to process large number of documents, so if user facing customization is required,
it’s an appropriate choice for such a problem.

Usual Templater features work in text format, although some data types (such as Image or XML
which inject XML as-is into the OOXML formats) don’t have such meaning in text formats.

When CSV is used, additional low-level plugins for quoting string values should be registered, to
simplify the conversion without extra metadata information.

Multi-line context
Templater supports multi-line context even for text processing. This is useful for non-trivial CSV
exports which shown single row on two lines.

149

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/PowerQuery

[[T11 TEMPLATER

When Resize(tags, 0) is called, rows will be removed (and thus a pull-down will be performed).

Streaming documents

Unlike xlIsx, pptx and docx, a text processing will stream to output if certain conditions are met:

e if there are more than streaming size*® of processed rows
o streaming will only be invoked on large number of rows
e if there are no tags left before the first tag which is currently resized
o streaming will only be available if the context which is being processed has special
tag setup

e when resized is called multiple times during processing
o output will be flushed during the resize

o this can be done manually, or by using a streaming data type such as
Iterator/Enumerator

From a pseudocode streaming processing would look like:

open document
process headers, filters and other non-streaming data
repeat until end of data stream
a. resize to accommodate for the current streaming chunk
i. naive implementation would call resize(tags, 2) to create extra row
ii. then call resize(tags, chunk size) for processing the current chunk
b. process the current chunk
4. remove the extra row if necessary (it’s not necessary only in some edge cases for non-trivial
implementations)

5. process extra remaining tags (if any) which were dependent on the streaming data (and were
located at the end of the template)

A streaming template can look like:

Date:;[[filter.date]];;;

User:;[[filter.user]];;;

ID;Amount;Date;User;Timestamp
[[data.id]];[[data.amount]];[[data.date]:format];[[data.createdBy]];[[data.createdOn]]

when opened in Excel would look like a regular cell (without any styles)

40 Default streaming size is 16k. This can be configured via streaming method in the configuration API

150

[[T11 TEMPLATER

| A B C D E F

1 |Date: _[[filter.date]]

2 User: [[filter.user]]

3

4 1D Amount Date User Timestamp

5 |[[data.id]] [[data.amount]] [[data.date]:forma [[data.createdBy]] [[data.createdOn]]
b

To open CSV within Excel some culture specific requirements must be met:

e number decimal sign should match
o dot (.)is decimal sign in US countries, while comma (,) is in most EU countries

e comma separator should match
o comma (,) is separator in US countries, while semicolon (;) is in most EU countries

It’'s common to stream into a ZIP stream directly (instead of file) and thus further reduce the amount
of used memory. Templater will reuse data structures and thus will only consume constant amount
of memory, which means if data is iterated over in a streaming fashion (instead of being loaded all
into memory) huge documents can be created.

151

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/CsvStreaming

[[T11 TEMPLATER

XML features

Templater v7 adds support for XML as extension. This way, similarly to CSV/text, but within the rules
of XML formats, Templater can be used to create XML/HTML files. While there are numerous existing
solutions to this problem already, Templater unifies all this formats behind a same API, with same
processing methods and plugins.

XML processing is also high performance and supports streaming, so Templater can be used to create
rather complex/large XML documents if it needs be. Therefore, there are some advantages if
Templater is used for such purpose:

e XML can be user configured (in the same way as Word/Excel/PowerPoint/CSV/txt files can)
e same processing can be done on different formats (data structures can be reused to create
export for xlIsx, docx, pptx, csv or xml without any code changes)
e Templater is heavily optimized and can output XML files at high speed
e streaming can be utilized to create huge documents with low memory usage
o while streaming can be utilized on xlsx (and docx/pptx), not all streaming features
can be used as document is optimized for keeping all data structures in memory
before the end of processing
e Comment watermark message will be added into the document if unlicensed version is used
o but since comments are ignored by most tools and should not create problems.
Licensed version removes the watermark message

Simple documents
There are various use cases for simple XML format usage:

e allow runtime configuration of integration messages
e create expected XML document based on some external application format
e simple html messages which follow the XML as xhtml

o signup email and similar simple messages

Templater is able to process large number of documents, so if user facing customization is required,
it’s an appropriate choice for such a problem.

Usual Templater features work in XML format, although some data types (such as Image) don’t have
any meaning in XML format.

Templater will respect the XML rules, meaning it will escape expected characters, so no additional
configuration is required.

152

[[T11 TEMPLATER

Streaming documents
Unlike xlIsx, pptx and docx, a text and XML processing will stream to output if certain conditions are
met:

e if there are more than streaming size*! of processed rows
o streaming will only be invoked on large number of rows
e if there are no tags left before the first tag which is currently resized
o streaming will only be available if the context which is being processed has special
tag setup
e when resized is called multiple times during processing
o output will be flushed during the resize
o this can be done manually, or by using a streaming data type such as
Iterator/Enumerator

From a pseudocode streaming processing would look like:

open document
2. process headers, filters and other non-streaming data
3. repeat until end of data stream
a. resize to accommodate for the current streaming chunk
b. process the current chunk
4. process extra remaining tags (if any) which were dependent on the streaming data (and were
located at the end of the template)

A streaming template can look like:

<data>
<filter after="[[filter.after]]" before="[[filter.before]]" />
<items>
<item attribute="[[items.attribute]]">
<name>[[items.name]]</name>
<number>[[items.number]]</number>
</item>
</items>
</data>

It's common to stream into a gzip (instead of file) and thus further reduce the amount of used
memory. Templater will reuse data structures and thus will only consume constant amount of
memory, which means if data is iterated over in a streaming fashion (instead of being loaded all into
memory) huge documents can be created.

While processing attributes, if null value is provided, Templater will remove the relevant attribute
from output.

41 Default streaming size is 16k. This can be configured via streaming method in the configuration API

153

[[T11 TEMPLATER

Best practices

While Templater APl is a minimal one, the feature set is quite big and therefore there are various
best practices which can be followed when using Templater. Some of them are only applicable for
enterprise applications, but it’s good to be familiar with them since they will provide deeper
understanding of how Templater works and how it should be used.

Complex documents
On the surface Templater looks just like a mail merge library. But once you scratch the surface all
kinds of complex patterns emerge from deceptively simple operations:

e duplicate or remove tag
e replace tag with a value

Some of those emerging patterns are:

e document can consist for parts which are only conditionally shown
o this way complex document can cover all use cases and then adjusted to fit only the
relevant use case for the specific processing
e external code can be used to integrate complex behavior during the replacement
o using plugins to load image on demand or convert it from argument
o consuming third party libraries for complex conversions such as verbalizing numbers
into text
o enriching common use cases with appropriate metadata over time
e code can be reused between reporting and other parts of the system
e dynamic types allow for maximum ease of use due to natural matching with tags
o template defined for a single object can work for a collection of objects without any changes
o this allows for easy bulk export instead of having a separate bulk only export

Still, the most important aspect of complex documents is that they are constructed in rich editor such
as Microsoft Office. This provides all kinds of benefits:

e document layout can be prepared/defined much faster and will produce much nicer looking

results - in contrast to defining layout logic in code
o most of the time, it’s not even feasible to create complex layouts which can be done
in MS Office through code

e non-developers can take ownership of defining/managing the documents which provides
better separation of work

e existing documents can be used as a starting point when some legal document needs to be
created

e minor changes to the document are done in fraction of time and minimize the number of
involved parties

154

[[T11 TEMPLATER

Multi-step processing
Complex processing sometimes requires several passes through the template:

o first prepare the tags for second pass
o using horizontal-resize, dynamic resize or just regular processing which creates new
tags
e inthe second pass process all tags with the expected values

Common use case for double processing is when multiple columns need to be used to display row
information per some subset. While there are multiple solutions to this problem (such as dynamic
resize per row) sometimes it’s much faster to prepare the layout in first processing and then process
the data in second, especially when large number of rows are exported.

A common pattern for such exports is to use a dictionary/map for dynamic part of the schema®,
while reusing existing classes/fields for static part of the schema.

An example of such template

A B C D E F G

GL Code Account Name Change in Balance
Total

[[aces.aceo [[aces.accountName! [[aces.totalBalance

Total [[erganization.description]]
[[aces.closingBal3[[organisation.tag]]

Closing Balance J[[nrganiza1iun.name]:hurizun'tal-resize:whnle-cnlumn]

ma..lcnmk

would be converted into:

A A B C D E F

5 |GL Code Account Name Change in Balance |Closing Balance |Region A Region B

] Total Total Sub-total Sub-total

7 [[acecs.acco [[aces.accountName [[aces.totalBalance [[accs.clnsingBaI|[[accs.org,ﬂ\.subtota|]] [[accs.orgB.subtotal]]
8

Another alternative (for this specific example) would be to instead show the data in raw tabular
format and then use the pivot to transform it into another format, but sometimes preparing data
before passing it to Excel allows for more user-friendly design of various charts and other pivot
tables.

When processing templates in such a way, in memory streams should be used between steps; which
means even multi-step processing should be fast.

Hierarchical structures

Templater supports arbitrary deep hierarchies®. A common pattern is that once the document is
setup for exporting a single instance (such as a single invoice), Templater can support export of
multiple instances by just passing in collection instead of a single object instance for processing.

42 When allowing the use of maps for navigation it's important to prepopulate maps with all possible values for
keys, not just the ones which are present in specific rows. This will reduce problems with tags which were left
in the document since there was no data in the map.

43 There is a configurable limit of 8 to prevent bad context detection. This can be changed during initialization

155

https://github.com/ngs-doo/TemplaterExamples/tree/master/Advanced/DoubleProcessing

[[T11 TEMPLATER

But data structure hierarchy should closely match document hierarchy. That way it will be easy to
reason about which regions of the document need to be duplicated and how data translates from the
model to the document.

If part of documents needs to be duplicated this means data structure should have an appropriate
matching collection.

Sometimes it’s useful to transform collection into map, especially when collection has a specific key
as identifier. This way only relevant part of the collection can be shown as a column, instead of
region of the document being duplicated.

Another common pattern is to have first/last property instead of a collection, as this is the only
relevant information most of the time.

Ideally domain model can combine all of the above and thus allow for customization of documents in
various ways. An example could look like:

public class Customer
{
public string ID;
public string Name;
public List<Account> Accounts;
public Dictionary<string, Account> AccountPerProduct;
public Account FirstAccount;
public Account LastAccount;

}

public class Account

{
public string ID;
public decimal Balance;
public string Product;
public DateTime CreatedOn;
public List<Transaction> Transactions;
public Transaction FirstTransaction;
public Transaction LastTransaction;

}

public class Transaction

{
public string ID;
public decimal Amount;
public DateTime On;

Common patterns can be extracted into appropriate properties:

e list of all accounts/transactions is available on customer/account
e accounts are grouped per product into a map
o this allows use of product id as a key over the dictionary
o dictionary should be populated for all possible products, with nulls for accounts
which do not exists for a product - this way generic template can be designed which
will work in all cases, not just when there is a particular product on a client

156

[[T11 TEMPLATER

e first/last account/transaction is available on customer/account
o depending on business logic and use cases there could be rules which are perfect fit
for such a model, as it could allow only a single active account
o quick info about when the last/first transaction happened can be shown along the
customer

By using this model, a rich client row can be displayed, which does not contain any nesting, even
though the actual model has 2 level nesting (Customer -> Account -> Transaction). An example:

F2 - (» J= | [[AccountPerProduct.Deposit.FirstTransaction.On]]
I P

4 A B C D
8 i0__ B customer name Blit accounts___ B3 Deposit account B2

E F G

2 [[[ID]] [[Name]] [[Accounts.Count]] uct.Deposit.ID]] t.Deposit.Balance]] |ansaction.On]]
3

Common use case for hierarchical structures is to display them in hierarchical way, which for the
same model could mean:

e sheet per customer
e accounts repeated in a sheet
e transactions repeated for an account

Such a template could look like:

AccountGroup - "i J | Account
A A B C D E
1 Name: {{Name}}
2
3 ([Account {{Accounts.ID}}
4 |Balance Haccounts.Balance}}
5 |Product {Accounts.Product}}
& [Created on: {{Accounts.CreatedOn}}
7
8 Transactions
3 Amount Bon B
10 |{{Accounts.T {{Accounts.Tra {{Accounts.Trapsactions.®n}}
11

when paired when hierarchical data:

[

157

[[T11 TEMPLATER

{"ID":"CUS-01","Name":"Customer 1","Accounts":[

{"ID":"DEP-01","Balance":125,"Product":"Deposit","CreatedOn":"2017-04-02","Transactions":[
{"ID":"00001","Amount":50,"0On":"2017-04-02"},
{"ID":"00002","Amount":25,"0On":"2017-04-03"},
{"ID":"00005","Amount":50,"0On":"2017-05-02"}

1%

{"ID":"LN-01","Balance":80,"Product":"Loan","CreatedOn":"2017-10-01","Transactions":[
{"ID":"00003","Amount":100,"0On":"2017-10-02"},
{"ID":"00004","Amount":-20,"On":"2017-11-02"}

1}

1%
{"ID":"CUS-02","Name":"Customer 2","Accounts":[

{"ID":"DEP-02","Balance":300,"Product":"Deposit","CreatedOn":"2018-01-15","Transactions":[
{"ID":"00010","Amount":100,"0On":"2018-02-12"},
{"ID":"00011","Amount":200,"On":"2018-03-12"}

1}

1}
]

would be transformed into nested representations:

158

[[T11 TEMPLATER

temp_range_1 - "i Jx | Account
A B C D E

y |

2

3 |/Account DEP-01

4 |Balance 125
5 |Product Deposit

6 Created on: 2017-04-02
7

8 Transactions

B0 Blamount Blon B
10 ‘00001 50 2017-04-02

11 00002 25 2017-04-03

12 'oooos 50 2017-05-02

13

14

15 |Account LN-01

16 [Balance 80

17 |Product Loan
18 |Created on: 2017-10-01

19

20 Transactions

740 Blamount EBlon E)

22 |5:mu3 100 2017-10-02

23 |00004 -20 2017-11-02

24

25 | |
Collapse

Most of the time collapse metadata should not be used. Instead data models should indicate what
region of the document should be removed during processing. But on more complex documents,
especially when there are different display variants for the same part of the data, built-in or custom

collapse plugins are required.

Calling Resize(tags, 0) on specific parts of the document can have many applications. Often, it is
sufficiently good just to remove a single row, instead of providing whole alternative layout for some

special input.

For highly complex documents it’s also useful to combine collapse and multi-document processing
since it will be much easier to reason about how Templater will behave.

159

[[T11 TEMPLATER

Common use case for removal part of the document is when that document part has no values and
thus should not be displayed. An example would be a loan application which has an optional co-
applicant and thus we want to include relevant part of the document only when co-applicant is used:

public class Application

{
public int paybackYears;
public bool? ucCheck;
public string ucCheckResponse;
public Applicant applicant;
public Applicant coApplicant;
}

paired with template:

Application

Payback years: [[paybackYears]:clone]
UC check: [[ucCheck]:bool(Passed Failed,Missing)]
UC check message: [JucCheckResponse]:collapself{Ok]]

Applicant

Name: [[applicant.eetName]]

Employer name: [[applicant.eetFromUntil.getName]] [[applicant.eetFromUntil]:collapse:hide]
From: [[applicant.getFromUntil.getFromYear]]/[[applicant.getFromUntil.getFromM onth]]
Until: [[applicant.getFromUntil.getUntilYear]]/[[applicant.getFromUntil.getUntilMonth]]
Employer name: [[applicant.eetFrom.getNamel] [[applicant.eetFrom]:collapse;hide]

From: [[applicant.getFrom.getFromYear]]/[[applicant.getFrom.getFromMaonth]]

Co-applicant [[coApplicant];:collapse:hide]

Name: [[getColpplicant.zetName]]

Employer name: [[cofpplicant.eetFromUntil.gzetName]] [[colpplicant.eetFromUntil]:collapse:hide]
From: [[codpplicant.getFromUntil.getFromYear]])/[[coApplicant.getFromUntil.getFromM onth]]
Until: [[coApplicant.getFromUntil.getUntilYear]]/[[coApplicant.get FromUntil.getUntilMonth]]
Employer name: [[cofpplicant.eetFrom.eetMame]] [[cofpplicant.eetFrom]:collapse:hide]

From: [[coApplicant.getFrom.getFromYear]]/[[coApplicant.getFrom.getFromMonth]]

will manage the visibility of Co-applicant part of the document through the null value of coApplicant
property. When collapse is paired with hide metadata this means that when the value is present,
instead of being displayed as ToString representation of an instance, it will be hidden instead.

It is sufficient to just specify a single tag if that will remove entire chunk of the document since during
removal Templater will inspect which other tags will be removed and remove them also in the
process.

160

[[T11 TEMPLATER

Another common use case of collapse is when paired with sections to have two different layouts for
same data (or portion of the data). Sections are used to indicate start/stop boundary which will be
removed during collapse.

Templater Editor will check for common setup problems, such as using collapse instead of collapse-
nested when appropriate:

L |-1-|-§-|‘1-|-2‘ 3 40 0 5 'E"I‘T'I'E'&‘g'l'lC‘\'llﬁl‘12'I'13‘\'14'I&5‘I'16'I‘1_'I'IE‘&
‘ - % — — -

Tag analysis B eos amountiull | eds densiti].
) - [IwebMessage.enumerations.inputTypes. FERTILIZ [webMessage.co | [[webMessage.eve

Number of issues detected: 46 - |ERI lactivities.alebes ferilizersl:collanse: :hide mmon.amountll | _ntfields.dosisTl
Location Desciption ~ . [[activities glebes fertilizers.inputName]] [[activities glebes fe | [[activities.olebhes. fer

rilizers inputAmoun | filizers. densitivalugl

flocaleFormat(%,.2 | ‘localeformai(%, .47
il 1

[[activities glebes fe | [[activilies.alehes. fer

: rilizers.anoounthdul] | tilizers, densitubul]

0 [[activities.... Collapse metadata used, but nested ta... H “me"umemnops_'m i i ii co " ‘f"s

utTynes.DEFENSIVEITactivities.| DEFENSIVE.to | e.DEFENSIVE mmon.amountl] nt.fields.dosisTl

0 [[activities.... Collapse metadata used. but nested ta... - alehes la | .securitylnter

(3 Invalid collapse setup

~ Collapse metadata used, but nested tags detected on different rows.

Collapse will only remove rows in which the tag is located. f you want te remove rows of nested tags, you should use collapse-nested metadata or some custom cne.

e s ' i m! N 4n)

Invalid collapse setup

14 01300

0 [[activities.... Collapse metadata used, but nested ta...

15

0 [[activities.... Collapse m

4 mn

Performance/memory optimizations

While Templater is quite optimized and high performance for most documents processing it’s good
to be aware of various minor details which can improve the performance, sometimes quite
significantly.

Tag sharing across sheets

When a same collection is used across different Excel sheets, Templater will process it in a specialized
way. This incurs some memory and performance overhead. While this is not important for simple
documents (with only few thousand rows) it could be noticeable on really large documents. A quick
fix which will improve the performance of the processing is to use a different tag for different sheets.
An example of such fix would be to expose multiple properties as aliases, e.g.:

public class Report

{
public HeaderInfo Header = ...;
public List<Item> Items = ...;
public List<Item> Itemsl { get { return Items; } }
public List<Item> Items2 { get { return Items; } }
public List<Item> Items3 { get { return Items; } }
}

This way Sheet1 can use the [[Items]... tags, Sheet2 can use the [[Items2. tags, etc...

Sometimes even better workaround would be not to use a single report, since it might be better to
create multiple variants of a report instead of trying to put multiple variants inside a single Excel file.

Since v5 it is discouraged to add additional properties to the model in favor of using custom
navigation paths for such purpose. Templater will share tags as long as they have the same path, but
this can be changed by introducing specific metadata into navigation, e.g.:

[[Items:id(1).Property]]

161

[[T 11 TEMPLATER
[[Items:id(2).Property]]

Where semicolon is defined as navigation separator.

These workarounds will only work on collections which can be processed multiple times. If
processing a collection consumes it (a streaming collection) then only the sharing will work as
expected.

Templater Editor will report such setup with warnings:

B3 - I [[items.name]]

Tag analysis S

Murnber of issues detected: 2
Location Description

I[[items.name]] :[[items.p_[ice]]

Repeating cellection

Mooh own s W ke
1 | |

A[[items.nam... Collection tags detected in other shee...

‘L [litems.price]] Collection t: A Repeating collection
 Collection tags detected in other sheets: Sheet2,
When repeating same collection it is advisable to use navigation expressions to give tag unique path.
This will speedup processing and avoid seme common mistakes.

llj‘
172
Using formulas without cell references

During row duplication Templater needs to parse, rewrite formula so it can be used in a new row. If
formulas are defined in such a way that resize will not change their expression Templater will process

it much faster.

Optimal formula example:

F2 - fe | =lAmount]/DAYS360(DATE([Year];1;1);[Date])
4 A B c D
0 BIname Blpate EJAmount Edvear
BRI [[name]] [[date]] |[[amount]] [-YEAR([Date]) —[Amount]/DAYS360{DAT
3

Suboptimal formula example:

A A B

o Blname Elpate
2 |[hidl] [Inamel]

3

The main difference between an optimal and suboptimal formula is that optimal formula will have
the same display expression even when pushed around or duplicated.

There are few other basic rules:

162

[[T11 TEMPLATER

operations can reference named ranges instead of ranges which change
o SUM([named_range]) vs SUM(E2:T2)
it’s better to put in explicit value than to use formula
o sometimes formula expressions can be expressed in the domain model
o this can make complex Excel file much smaller and thus faster to process and open
after processing
property navigation can be used instead of formula expressions
o [[date.Year]] can produce same value as evaluating =YEAR([date_cell]) in Excel
= asabonus it doesn’t require evaluation after document is opened
often tags can be combined instead of complex formulas
o [[date.Year]]/ [[date.Month]] can produce the same result as =YEAR(XX) & “/” &
MONTH(XX)

Templater Editor will suggest formula improvements:

A D E
Tag analysis voX |1
2 Fee Name ~ |Finance Charges ~ |Mon-finance Charges =
MNumber of issues detected: 56 3 |[[aIIFee5.name]] [[allIFees.automated]] I[[aIIFees.manuaI]])
4
Location Description o~ 5
e I e
6
Cell reference 7
H =LEFT[B3,4] Formula is referencing cell (B3] explicitl... g
(@ Cell reference
. ~ Formula is referencing cell (B3) explicitly instead of using column syntax ([Typel).
d m It is best practice to reference cells via column syntax. 4

Unnesting hierarchical models
While Templater encourages deep hierarchies, on large complex documents there are few

performance tricks which can sometimes yield a significant performance improvement.

One trick to “unnest” a hierarchy is to build a specialized model which looks like a hierarchy, but it’s

actually flat (at least one level smaller).

E.g., for hierarchy such as:

Client collection -> Account collection

can be flattened into

Account collection (with Client info)

Model such as:

public class Client

{

}

public string Name;
public string ID;
public List<Account> Accounts;

public class Account

{

public string ID;

163

[[T11 TEMPLATER

public decimal Balance;
public DateTime OpenedOn;

can be written as*

public class Account

{
public string ID;
public decimal Balance;
public DateTime OpenedOn;
public Client Client; //use for Client on every row
public Client ClientFirst; //use for Client only on first row
}
public class Client
{
public string Name;
public string ID;
}

In both cases report can have model such as:

public class Report

{
public List<Client> Clients;

public List<Account> Accounts;

For reports which need to list all clients and their accounts instead of having report such as:

V| A B C D E
il Client ID Account ID Account balance Account created

2 [IClients.ID]] [[Clients.Name]] [[Clients.Accounts.ID] [[Clients.Accounts.Balance]] [[Clients.Accounts.OpenedCn]]

Potal | | o |
4

when paired with input such as:

{
"Clients":[

{"ID":"CLI-01","Name":"John Doe","Accounts":[
{"ID":"DEP-CLI-01","Balance":505,"OpenedOn":"2015-02-01"},
{"ID":"LOAN-04","Balance":12005,"OpenedOn":"2016-03-06"}

[}

{"ID":"CLI-02","Name":"Jane Doe","Accounts":[
{"ID":"DEP-CLI-05","Balance":-200,"OpenedOn":"2017-03-06"},
{"ID":"LOAN-XX","Balance":230,"OpenedOn":"2017-03-07"}

1}

]

4 If model is written for reporting purpose only, its fine to even have both options in a model, which is what
happens anyway on models which are evolved over time for transition purposes

164

[[T11 TEMPLATER

will result in output:

D6 - £ | =sum(D2:D5)
A A B C D E
1 Account ID Account balance Account created
2 Cu-01 John Doe DEP-CLI-01 505 2015-02-01
3 LOAMN-04 12005 2016-03-06
4 CLI-02 lane Doe DEP-CLI-05 -200 2017-03-06

LOAN-XX 230 2017-03-07

I — T —

7

Same result can be created with only a single nesting level if the second model is used where
ClientFirst is populated only on the first account for a client®, e.g.:

{
"Accounts":[

{"ID":"DEP-CLI-01","Balance":505,"OpenedOn":"2015-02-01",
"ClientFirst":{"ID":"CLI-01","Name":"John Doe"}},

{"ID":"LOAN-04","Balance":12005,"OpenedOn":"2016-03-06","ClientFirst":null},

{"ID":"DEP-CLI-05","Balance":-200,"OpenedOn":"2017-03-06",
"ClientFirst":{"ID":"CLI-01","Name":"John Doe"}},

{"ID":"LOAN-XX","Balance":230,"OpenedOn":"2017-03-07","ClientFirst":null}

by using a different template:

| B2 - (‘ I | [[Accounts.ClientFirst.Name]]
A A B C D E
M Client ID |Client name Account ID Account balance Account created
2 [[Accounts.Clij[[Accounts.Client[[Accounts.1D]] [[Accounts.Balance]] [[Accounts.OpenedOn]]

Java XML memory usage
Prior to v7 Templater relied heavily on underlying XML libraries. Thus, it was recommended to setup
specific xml libraries during initialization:

e xmlBuilder
e xmlTransformer

With v7 there is no more need for this tweaking, as Templater uses own internal XML libraries.

4 This is much easier to implement when actual data structures are used, rather than JSON which is passed
around

165

[[T11 TEMPLATER

Java XML streaming

OutputStream for XML should be memory based without compression or backed by buffer. By
default, Java will frequently flush content of XMLStreamWriter to output stream. Significant
performance improvements can be gained by wrapping output file with a BufferedOutputStream.
Code would then look like:

InputStream is = ...

FileOutputStream fs = ...

try (BufferedOutputStream bos = new BufferedOutputStream(fs, 65536);
TemplateDocument doc = Configuration. factory().open(is, "xml", bos)) {
doc.process(...);

}

Factory reuse

When Templater is used to create/process large number of small documents, reusing factory can
yield significant gains. Templater will not switch threads during processing, so thread locals and other
tricks can be used to further optimize interaction with plugins configured during library initialization.

Class visibility in Java

While Templater will only work with public methods and fields, non-public classes can be sent for
processing in which case Templater will have to change visibility during reflection invocation. Since it
restores visibility after the operation to previous state this operation has high overhead. To avoid it
used classes should be public which will not require visibility change and thus they will be very
performant.

Execution monitoring

While most parts of Templater are highly optimized, when large documents are being processed,
application can run out of memory and go into special Garbage Collection loop which slows down
processing significantly, often resulting in OutOfMemory exception.

To combat such problems in a generic way, Templater processing allows for a cancellation token
argument, so execution can be canceled. If processing fails to finish within the specified timeframe,
processing can be notified of cancellation request, which means Templater will stop processing
quickly after that?.

An example of processing with timeout of 30 seconds would look like:

var cts = new CancellationTokenSource();

cts.CancelAfter(30000);

var factory = Configuration.Factory;

using (var doc = factory.Open(input, extension, output, cts.Token))

{

Same feature is available from Templater Editor to cancel processing:

46 Templater checks the state of CancellationToken on critical places, and will throw relevant exception in case
of such signal to stop further processing

166

[[T11 TEMPLATER

|
r[[T]] Processing progress.. ‘ l&r

Opening document ...

Tag management
Due to the way tags are defined within the document it’s prudent to have some specialized logic

around the tag management:

e tag discovery - it should be easily discoverable which tags exists
o sometimes tag is bound to the actual data on the systems (especially when exposed
through maps)
o this might be more complicated when there is no actual schema in the system
o ideally templates should be bound to schema which Templater Editor picks up
e document validation - before the document is “accepted” by the system, tag validation
should be performed on it
o unless the system restricts how the tags can be bound with the document, it will be
quite common to have tag typos
o inaliving systems tag can change from version to version - and thus tags valid in an
earlier version can be invalid in a new version
o Templater Editor can pick up most of the heavy lifting here, as long as its integrated
with the system via schema definition
e additional documentation — while tags should be named clearly which should explain their
purpose, it is very useful to provide additional information for each tag via metadata
integration
o tag description — explaining the purpose and usage of the tag
o tag status —to deprecate problematic tags over time
o example —showing actual expected value for easier understanding
o category — grouping tags into same buckets

An example of tag management looks like:

167

NEW GENERATION SOFTWARE LTD
Vladimira Vari¢aka 3, 10010 Zagreb, Croatia

Supported file extensions: xIsx, xlsm, docx, docm, pptx, pptm, csv, txt

Account Action Log

Download Original Template

Sample Customized Template AccountActionLog
(1).xlsx 3.5.2020 (xlsx)

Upload Custom Template. ..

Account Balance (Up to 10 different templates supported)

[T 11 TEMPLATER

https://templater.info

Download Original Template | Upload Custom Template. ..

Loan and Deposit Balance Report (xlsx)

n

Aging Analysis (Up to 10 different templates supported)

Loan and Deposit Balance Report 1 (xlsx)

AccountBalance Test BDA to RSDA (xlsx)

Download Original Template

Upload Custom Template. .

where each report has several variations, its own specialized validations/tags/schema and example

data set.

It is highly recommended to embed schema information into templates before returning file to the

user on download, as this will have the best possible experience for tag management.

4 A | 8 | c | D £ | F | & | H [+]

1 Available tags v
2 |Disbursement month (All)
3 |Branch (A 51 B
4 |Product Name (A1) -
5 | Drag and drop tag onto the cell once you find the appropriate tag
6| | column tan 7]
7 | Loans disbursed I.oalarrmlllm.hm Total Loans disbursed Total Loan amount Total Av. In arrears Tag Type Description ~
8 |Row Labels HVALUE! HVALUE! HVALUE!
9 |[[data.Credit officer]] 1] - | #ovjor RS 1 [#DIV/o! r
10 |Grand Total 1| - | oo 1| - | wowe data Account String Accourt D A
% data Branch String Branch Name 7
E data Cliert ID String Cliert Name
1a | data Credit officer String Credit Officer Name |
15
15 data.Days in amears Mumber
1z data Depatment String Crganisation Lev
18 da= Dishursement date | Organisation Level 3 Name (e.g. Territory
13
g * data. Disbursement month Number | Marth
1| | data.Disbursement year Number | Year
2] E data.In amears groups String

| Data | Analysis @ i [d] | [+] data | nan amoynt Humher S

New generation software Ltd, Vladimira Varicaka 3, Zagreb, Croatia — Registration number: 080542197 — Bank: Raiffeisenbank Austria

d.d. Zagreb — Director: Rikard Paveli¢ — Company number: 2004852

168

[[T11 TEMPLATER

User defined plugins

If metadata or low-level plugins are used, Templater will call them quite often on large documents.
This means plugins should avoid allocations whenever possible, either by caching, thread local
variables or similar means.

Normally, it’s often not possible to avoid allocations completely, which can be fine most of the time.
It's recommended to use a profiler for checking if user defined plugins are causing problems if there
is significant memory usage or processing takes a while.

169

[[T11 TEMPLATER

FA.Q.

Q: I'd like to test Templater before buying. How can | get a demo/trial license?
A: Templater can be tested without buying a license, as all features are available even without a
license. In case when license is not provided a watermark message will be added to the document.

Q: Can | export files to PDF?

A: Templater does not have a PDF export. All libraries we know of suffer from pixel perfect issues. We
suggest using a MS Office for PDF conversion and when this is not possible use 3™ party libraries such
as Aspose or Spire. For low budget solutions, LibreOffice in headless mode can be used, although
there will most likely be issues on complex documents.

Q: Can |l insert image into the document?
A: Yes. Use of special data type is required to insert an image: Imagelnfo. Builtin conversion exists for
language specific types (.NET: System.Drawing.Image/Icon, Java: Bufferedimage/ImagelnputStream).

Q: How can | pass JSON for processing?
A: Dictionaries/maps and lists/arrays can be used out-of-the-box. Once JSON is converted into maps
and lists, it can be passed to Templater for processing.

Q: I need some help, but my support period has expired. What can | do?
A: We suggest asking question at Github: https://github.com/ngs-doo/TemplaterExamples/issues.

Even when support period expires, license will be valid for new minor version releases. Often just
using the latest version might resolve some problem.

Q: Which license | need to buy for a Saa$S product?

A: Templater license allows for integration into third party apps which add significant other
functionality. This means that if your product is a business application you need to buy only one
license. If your product is exposing Templater API to others over the Internet you need to sign
additional Metering agreement.

Q: Once | try to open document Office complains about corrupted document. How can I fix this?
A: Most of the time reason for document corruption is use of non MS Office tools to prepare the
document. “Corruption” usually means that MS Office tools are unable to recognize some specific
feature when loading the file. In those cases, just saving the template in MS Office tools can resolve
the issue. Sometimes document must be recreated from scratch in MS Office tools. If the error still
persists, please send a reproducible for documents which were created in MS Office.

Q: Document does not look as | expect it to after processing.
A: If you are within your support period, please send us an email with a reproducible and the
expected output. An easy way to create a reproducible is to use JSON builds: https://github.com/ngs-

doo/TemplaterExamples/releases/latest.

If your support period has expired, please use the public channels such as Github

(https://github.com/ngs-doo/TemplaterExamples/issues) for community help

170

https://www.aspose.com/
https://www.e-iceblue.com/
https://github.com/ngs-doo/TemplaterExamples/issues
https://templater.info/buy/metered
https://github.com/ngs-doo/TemplaterExamples/releases/latest
https://github.com/ngs-doo/TemplaterExamples/releases/latest
https://github.com/ngs-doo/TemplaterExamples/issues

